Can measured soil hydraulic properties simulate field water dynamics and crop production?
Saadi Sattar Shahadha,
Ole Wendroth,
Junfeng Zhu and
Jason Walton
Agricultural Water Management, 2019, vol. 223, issue C, -
Abstract:
Agricultural system models simulate soil water dynamics and crop evapotranspiration (ETc) and growth to enhance soil and crop management. To achieve this, simulations must be critically evaluated against field experimental data in different field management conditions. In many evaluations, simulations deviated from field measurements, which can be due to the quality of model input parameters. Replacing soil hydraulic properties indirectly derived from soil textural data by measured soil hydraulic property may decrease the discrepancy between measured and simulated soil water status. What is the benefit of using measured soil hydraulic properties in a model instead of pedo-transfer-function (PTF) based approaches to estimate the hydraulic properties indirectly? The objective of this study was to investigate the effect of using measured soil hydraulic property input parameters (SHPIP) as Root Zone Water Quality Model (RZWQM2) inputs compared to PTF-based indirectly derived hydraulic parameter inputs with and without calibration. A field experiment with soybean, corn, and fallow soil was conducted. Five model scenarios using measured SHPIP and SHPIP derived from soil texture as model inputs were created. The results indicate that, RZWQM2 showed a high sensitivity to the SHPIP calibration for fallow and corn season. Uncalibrated measured SHPIP yielded better simulation results than other SHPIP scenarios with regard to soil water flux, crop evapotranspiration, and soybean yield during the validation. While, the calibration of the SHPIP in corn and fallow slightly helped soybean soil water prediction at the surface depth. Hence, with representative measurements of SHPIP, it was possible to improve model simulations even without calibrating the input parameters.
Keywords: Measured Soil Hydraulic Properties; Model Calibration; RZWQM2; Soil Water; Dynamics (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741930054X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:223:y:2019:i:c:60
DOI: 10.1016/j.agwat.2019.05.045
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().