Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system
Khokan Kumer Sarker,
Akbar Hossain,
Jagadish Timsina,
Sujit Kumar Biswas,
Bimal Chandra Kundu,
Alak Barman,
Khandakar Faisal Ibn Murad and
Farzana Akter
Agricultural Water Management, 2019, vol. 224, issue C, -
Abstract:
Scarcity of irrigation water has now become the main constraint for crop production globally. Irrigation water scarcity becomes severe especially during the dry, winter season in South Asia, particularly in Bangladesh due to the decline in groundwater table and drying of surface water resources. In South Asian countries, potato is traditionally grown with furrow irrigation system in dry, winter season in which irrigation water is applied frequently to each and every furrow. Such irrigation method increases water use and lowers irrigation water productivity (WP). We hypothesized that potatoes grown on raised beds, and irrigation water applied to alternate furrows based on the principle of partial root-zone drying, would maintain yield, reduce water use and increase WP, and enhance the quality of potato tubers in drought-prone areas of South Asia. To test this hypothesis, an experiment was conducted in two consecutive dry, winter seasons (2015–16 and 2016–17) at the research field of Irrigation and Water Management Division of the Bangladesh Agricultural Research Institute, Gazipur, Central Bangladesh and assessed crop dry matter and yields, water use and WP, quality, and nutrient concentrations of potato tubers in different irrigation treatments. The experiment consisted of two levels (first, three irrigation at critical growth stages and second, four irrigation at every 12–15 days interval) and three methods (AFI – alternate furrow irrigation; FFI - fixed furrow irrigation; and EFI – every furrow irrigation) of irrigation. Dry matter and tuber yield of potato did not differ significantly (P < 0.05) between AFI and EFI but differed significantly (P < 0.01) when compared to FFI. On average, AFI and EFI had tuber yield of 21.9 and 22.2 t ha−1 with three irrigation and 23.2 t ha−1 and 23.9 t ha−1 with four irrigation, respectively during 2016 and 2017 while AFI and EFI had WP of 14.8 kg m-3 and 9.89 kg m-3 with three irrigation and 14.9 kg m-3 and 9.96 kg m-3 with four irrigation, respectively during 2016 and 2017. On average, AFI saved irrigation water by 35% and irrigation water productivity significantly (P < 0.001) improved by 50% compared to EFI over two years. Total soluble sugar, as an indicator of tuber quality, also varied significantly (P < 0.01) between AFI (6.290 Brix) and EFI (6.370 Brix). Nutrient concentrations of potato tubers were not significantly different (P < 0.05) between irrigation treatments. Results demonstrate that the alternate furrow irrigation can maintain potato tuber yield, and reduce water use and increase irrigation water productivity of potato tubers compared to every or fixed furrow irrigation in Bangladesh. This irrigation method could potentially be an attractive alternative to every or fixed furrow irrigation in South Asian countries where irrigation water is limited and appropriate water-saving irrigation methods are not available.
Keywords: Potato; Tuber quality; Water use efficiency; Water-saving irrigation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419308029
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:224:y:2019:i:c:9
DOI: 10.1016/j.agwat.2019.105750
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().