EconPapers    
Economics at your fingertips  
 

A lack of complementarity for water acquisition limits yield advantage of oats/vetch intercropping in a semi-arid condition

Yue Zhang, Yu Duan, Jiayi Nie, Jie Yang, Jianhong Ren, Wopke van der Werf, Jochem B. Evers, Jun Zhang, Zhicheng Su and Lizhen Zhang

Agricultural Water Management, 2019, vol. 225, issue C

Abstract: Oats (Avena sativa L.) and hairy vetch (Vicia villosa) are well adapted crop species for production in semi-arid environments, such as in Inner Mongolia, China, where due to variable rainfall, farmers do not apply fertilizer. We hypothesized that the use of a mixture of a cereal and a legume could enhance yields under these low input conditions, because integrating an N-fixing legume in the system could mitigate N limitation for the cereal and enhance its growth. A nine-year (2008–2016) field experiment was set up with three treatments: sole oats, sole vetch and oats/vetch strip intercropping. These cropping systems were grown continuously in the same plots, to allow accrual of long-term effects. Yields and water use were quantified in years 7–9 of the experiment (2014 to 2016). With a 50/50 ratio of the area sown to the two species, the intercropped oats had a relative yield of 0.59 and intercropped vetch had a relative yield of 0.45. Oats was the dominant crop characterized by a relative yield per plant of 1.18, compared to a relative yield per plant of vetch of 0.89. However, the land equivalent ratio (LER), expressing the comparative efficiency of land use in intercropping, and the water equivalent ratio (WER), the comparative system level water use efficiency of the intercrop relative to sole crops, were both not significantly different from one. Thus we reject the hypothesis that oat/vetch intercropping increases land productivity and water use efficiency. From differences in results in years with more rainfall and years with less rainfall, we infer that yields of both species are mostly limited by water availability. On average over the three years, the yield disadvantage of vetch was fully compensated by the yield advantage of oats, due to a lack of complementarity for water acquisition. This conclusion can be generalized to the testable prediction that species selection for productive intercropping should focus on achieving complementarity for traits that interact with the factor most constraining productivity, which was rainfall in this particular crop system under the conditions of the study.

Keywords: Productivity; Land equivalent ratio; Water use efficiency; Water equivalent ratio; Daily water use (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419306195
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419306195

DOI: 10.1016/j.agwat.2019.105778

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:225:y:2019:i:c:s0378377419306195