Agro-environmental sustainability and financial cost of reusing gasfield-produced water for agricultural irrigation
Alban Echchelh,
Tim Hess and
Ruben Sakrabani
Agricultural Water Management, 2020, vol. 227, issue C
Abstract:
Produced water (PW) is the largest by-product generated from oil and gas extraction. Currently, half of the total PW volume is managed through environmentally-controverted and costly disposal practices. In dry regions, PW could be beneficially reused to irrigate crops reducing the overexploitation of freshwater resources. However, PW quality, and particularly its high salinity, sodicity and alkalinity, create uncertainties regarding the agro-environmental sustainability and the cost of this practice. The aim of this paper was to identify potential agro-environmentally sustainable irrigation schemes with gasfield-PW in hyper-arid Qatar and to estimate their operating costs. A soil-water model was used to simulate the irrigation of sugar beet with gasfield-PW under the climatic and soil conditions occurring in northern Qatar. Different irrigation strategies combining over-irrigation, PW blending with treated sewage effluent (TSE) and PW desalination were tested in order to protect the soil and the aquifer from salinisation and sodification. The operating costs of identified agro-environmentally sustainable scenarios were estimated through a cost analysis. In the case study, the simulations indicated that using an irrigation volume up to ∼300% of the crop water needs with a blend of two-thirds PW and one-third TSE (or desalinated PW) could preserve the soil stability, crop yield and groundwater quality. The least-cost option was to reduce the irrigation amount at a little over the crop water needs and mix PW with an equivalent volume of TSE or four equivalent volumes of desalinated PW which would cost $0.26/m3 and $0.46/m3 respectively. As traditional PW disposal practices cost between $0.06–$16.67/m3, reusing PW in irrigation is thus potentially a competitive PW management strategy for O&G firms.
Keywords: Arid climate; Irrigation water quality; Modelling; Qatar; Salinity; Sodicity (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419312831
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:227:y:2020:i:c:s0378377419312831
DOI: 10.1016/j.agwat.2019.105860
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().