EconPapers    
Economics at your fingertips  
 

Evaluation of within-season grapevine evapotranspiration patterns and drivers using generalized additive models

Noa Ohana-Levi, Sarel Munitz, Alon Ben-Gal and Yishai Netzer

Agricultural Water Management, 2020, vol. 228, issue C

Abstract: Evapotranspiration (ETc) levels are influenced by the area of plant canopy, atmospheric conditions, plant physiology, and soil-water relations, which are all subjected to changes throughout the growing season. Understanding temporal trends, variability, and interactions between ETc and its governing factors is valuable for modeling, predictions and vineyard water management. Our research objective was to quantify temporal patterns of ETc of ‘Cabernet Sauvignon’ grapevines and affecting meteorological (temperature, relative humidity, radiation, wind speed) and vegetative (leaf area) factors during the growing season and within five phenological growth stages (0–4). Temporal variability of ETc was modeled using five consecutive seasons of lysimeter time-series data, capturing the non-stationary nature of the data in terms of seasonality, trends and within-seasonal patterns. The temporal dependence of ETc and its drivers throughout growing seasons was evaluated using the Box-Pierce test, autocorrelation function (ACF) and partial ACF. Patterns of the relations between ETc and its covariates were quantified using multiple nonlinear regression, the generalized additive model (GAM), at the full growing season scale and for each phenological stage. Further examination on the effect of leaf area on ETc was conducted using area under curve calculations and ETc-leaf area ratio. The results demonstrate temporal autocorrelation structure of the data, supporting the incorporation of time variables in the GAM. Each phenological stage had a unique composition of relative importance of the covariates, with variation in ETc being largely explained by time variables. Ordinarily, ETc in early season (Stage 0) and at late season (Stage 3, approaching harvest) was mostly influenced by leaf area dynamics, while in mid-season it was highly affected by temperature. The GAM enabled quantification of within-seasonal patterns of interrelations between covariates and their effects on ETc, and revealed inter-seasonal variability due to dissimilar meteorological conditions. Agro-technical management affects canopy dimensions and structure, thus influencing ETc-leaf area relations.

Keywords: Phenological growth stages; Drainage lysimeters; Leaf area index; Multivariable non-linear regression; Time-series analysis; Temporal autocorrelation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419310649
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:228:y:2020:i:c:s0378377419310649

DOI: 10.1016/j.agwat.2019.105808

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:228:y:2020:i:c:s0378377419310649