Differential irrigation scheduling by an automated algorithm of water balance tuned by capacitance-type soil moisture sensors
Jesús María Domínguez-Niño,
Jordi Oliver-Manera,
Joan Girona and
Jaume Casadesús
Agricultural Water Management, 2020, vol. 228, issue C
Abstract:
Automated software tools are required to undertake the routine tasks and decision-making involved in scheduling irrigation. A key issue in this topic is how to integrate sensors in the scheduling approach. The objectives of this research were to test, in the context of drip-irrigated orchards: (a) the suitability of FAO’s water balance method, locally adjusted by sensors, as the basis for the scheduling algorithm, (b) the suitability of capacitance-type soil moisture sensors, and an approach for their automated interpretation, for providing feedback to the scheduling algorithm, and (c) the performance of these combined approaches in the autonomous scheduling of irrigation in an apple orchard with heterogeneous vigour. The trial consisted of applying for two years the proposed approaches using an experimental web application, IRRIX, which scheduled irrigation of two irrigation sectors, which differed in tree size. The automated system was compared with manual scheduling by a classical water balance and with the actual evapotranspiration determined by a weighing lysimeter located in the same orchard. Results show that the irrigation applied by the automated approach in the sector of larger trees agreed with the ET determined by the lysimeter and, overall, with the scheduling by an experienced irrigator using a classical water balance. Meanwhile, as a result of a different feedback from soil moisture sensors, the same system reduced irrigation in the sector of smaller trees by a similar amount to that expected from the differences between the two sectors in the fraction of photosynthetically active radiation. This study illustrates that the method of water balance complemented with capacitance-type soil moisture sensors provides a sound basis for automated irrigation scheduling in orchards.
Keywords: Irrigation control; Drip irrigation; 10HS sensor; Internet of things; Orchard automation; Precision agriculture (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419315641
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:228:y:2020:i:c:s0378377419315641
DOI: 10.1016/j.agwat.2019.105880
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().