Artificial intelligence approach to estimate discharge of drip tape irrigation based on temperature and pressure
Amin Seyedzadeh,
Saman Maroufpoor,
Eisa Maroufpoor,
Jalal Shiri,
Omid Bozorg-Haddad and
Farnoosh Gavazi
Agricultural Water Management, 2020, vol. 228, issue C
Abstract:
One of the effective factors to ensure the desirable operation of drip irrigation systems is the uniform emitter discharge, which is affected by operating pressure and temperature. Accurate estimation of this parameter is crucial for optimal irrigation system management and operation. In this research, the emitter outflow discharge was simulated through artificial intelligence (AI)-based approaches under a wide range of temperature (13−53 °C) and operating pressures (0–240 kPa) variations. The applied AI models included artificial neural networks (ANN), neuro-fuzzy sub-clustering (NF-SC), neuro-fuzzy c-Means clustering (NF-FCM), and least square support vector machine (LS-SVM). The input parameters matrix consisted of operating pressure, water temperature, discharge coefficient, pressure exponent and nominal discharge, while the ratio of measured discharge to nominal discharge (modified coefficient, M) was the output of the models. The applied models were assessed through the robust k-fold testing data scanning mode. The 5-agent Global Performance Indicator (GPI) was used for the final reliable ranking. The results showed that all the applied AI models with an average mean absolute error (MAE) of 8.8% had acceptable accuracy for estimating the modified M coefficient. According to the GPI, the LS-SVM model had the lowest error, followed by the NF-SC model with a slight difference.
Keywords: Artificial neural network; Drip irrigation; k-Fold testing; Neuro-fuzzy; Support vector machine (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741931710X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:228:y:2020:i:c:s037837741931710x
DOI: 10.1016/j.agwat.2019.105905
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().