Changes in root hydraulic conductance in relation to the overall growth response of maize seedlings to partial root-zone nitrogen application
Niu Xiaoli,
Zhou Hanmi,
Wang Xiukang,
Hu Tiantian,
Feng Puyu,
Li Ting,
Zhao Na and
Yin Dongxue
Agricultural Water Management, 2020, vol. 229, issue C
Abstract:
The influence mechanism of heterogeneous nutrient distribution on compensatory growth of maize seedlings is a key topic in the interaction between crops and soil environment. We evaluated the significance of root hydraulic conductance (Lp) and related parameter changes in water uptake and growth regulation of plants under different nitrogen (N) conditions. Maize seedlings were grown in split-root containers containing N solutions. Three N treatments were applied: (1) full-strength N (control: C), in which both sub-root systems received 4.0 mM N (each sub-root: C44); (2) partial N deficit (D), in which each sub-root system received 2.0 mM N (D42) or full-strength N (D44); and (3) partial N resupply (S), in which both sub-root systems received 2.0 mM N for six days, followed by 2.0 mM N (S22) or full-strength N (S24). The shoot dry mass in D increased gradually with early development, and was greater than that in C and S within 15–21 day, suggesting that the superiority of partial N deficit (D) in term of maize seedling growth was apparent and caused compensatory growth. Moreover, the slope and intercept in D44 and D42 between ΨL vs. Lp and shoot N content vs. Lp were obviously greater than that in C44, S24 and S22, indicating that higher plant dry mass in D might be attributable to the maintenance of a similar ΨL and improved shoot N content. In addition, the slopes and intercepts in D44 and D42 between Lp vs. root surface area and shoot N content vs. root surface area were higher than that in S24 and S22, suggesting that compared with partial N resupply, partial N deficit was more advantageous to root water uptake and N accumulation at the same level of root surface area, thus resulted in higher dry mass of maize seedlings. However, partial N resupply significantly increased root cortex thickness/diameter ratio and reduced root vessel diameter, which resulted in lower Lp, ΨL and shoot N content during 12–21 day. Unexpectedly, at 21 day, the shoot dry mass in S could recover to the level of control. The regulation mechanisms in partial N resupply will be the focus of future studies. Thus, when adopting the method of partial N application, it is necessary to consider the soil N condition before partial application.
Keywords: Leaf water potential; Partial N application; Plant growth; Root hydraulic conductance; Shoot N content; Root-to-shoot ratio (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419306651
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:229:y:2020:i:c:s0378377419306651
DOI: 10.1016/j.agwat.2019.105839
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().