Improving water uptake by trees planted on a clayey soil and irrigated with low-quality water by various management means: A numerical study
David Russo,
Asher Laufer and
Asher Bar-Tal
Agricultural Water Management, 2020, vol. 229, issue C
Abstract:
The yield of avocado trees planted on clayey soils decreases due to irrigation with treated-waste water (TWW). We hypothesized that the main cause for this yield reduction is the reduction in water uptake by the trees roots. The aim of this numerical study was to identify the main soil factors that control the reduction in water uptake by the trees roots, and to test various soil substrate-based and water-based management schemes design to counterweigh the water uptake reduction. The study relies on physically based, three-dimensional (3-D) simulations of flow and transport in variably saturated, spatially heterogeneous, flow domain, conducted for three successive years. The main findings of this study suggest that: (i) the long-term effect of irrigation with TWW on the response of the flow system is attribute to the salinity of the TWW, and not to its sodium adsorption ratio, SAR; (ii) with respect to improving water uptake by the trees' roots, the water-based scheme that alternates irrigation water quality between TWW and desalinized water, DSW, (ADW) performed better than the water-based scheme that uses fresh water only (FW). The soil substrate-based schemes, TUFp, that used trenches with highly coarse-textured soil material and pulse irrigations, and, particularly, SAop, that used trenches with finer soil texture, performed substantially better than the soil substrate-based scheme that used trenches with highly coarse-textured soil material only (TUF); (iii) with respect to minimizing solute leaching below the root zone, the water-based schemes, FW, and, particularly, ADW, performed substantially better than the soil substrate-based schemes.
Keywords: Aeration; Desalinized water; Hydraulic conductivity; Salinity; Salt leaching; Simulation; Sodium adsorption ratio; Treated waste water; Trenches; Tuff; Water uptake (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419310959
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:229:y:2020:i:c:s0378377419310959
DOI: 10.1016/j.agwat.2019.105891
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().