Irrigation, crop stress and drainage reduction under uncertainty: A scenario study
F.D. Mondaca-Duarte,
S. van Mourik,
J. Balendonck,
W. Voogt,
M. Heinen and
E.J. van Henten
Agricultural Water Management, 2020, vol. 230, issue C
Abstract:
Two thirds of human water use is linked to agricultural practices including crop irrigation. Furthermore, excess irrigation leads to drainage problems. For this reason, reduced irrigation strategies need to be implemented to protect water resources. However, low irrigation may lead to crop water stress. A fast and inexpensive way to predict the necessary amount of irrigation required is by a model-based approach. With this approach, it is possible to explore the relation between irrigation, crop water stress and drainage. However, parameter uncertainty can reduce prediction accuracy. Therefore, the aims of this research were: (1) to develop and test a methodology that allows the analysis of uncertainty sources in irrigation strategies (2) to identify how much irrigation can be reduced while maintaining a low risk of crop stress, and (3) to explore the influence of uncertainty in soil parameters and evapotranspiration on model predictions. Results from a realistic case considered in this study indicated that, while maintaining a low risk of crop stress (<1 %), it is possible to reduce drainage (by 88 %) and water use (22 %) for a conventional irrigation strategy. This reduction is dependent on the type of risk aversion strategy and is specific for a case scenario where variations are certain.
Keywords: Hydraulic conductivity; Monte Carlo; Uncertainty; Richards equation; Evapotranspiration (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419314076
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:230:y:2020:i:c:s0378377419314076
DOI: 10.1016/j.agwat.2019.105990
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().