Irrigation performance under alternative field designs in a spate irrigation system with large field dimensions
E. Fadul,
I. Masih,
C. De Fraiture and
F.X. Suryadi
Agricultural Water Management, 2020, vol. 231, issue C
Abstract:
The sustainability of spate-irrigated agriculture in a semi-arid climate depends on efficient use of irrigation water. Thus, efficient capture and storage of soil moisture in the field are crucial for sustained productivity. The main objective of this study is to examine the performance of improved field design strategies to manage variable irrigation water supply and application time in the Gash agricultural scheme (GAS) in eastern Sudan where open-end border irrigation is practiced to irrigate large fields with variable sizes that range from 250 to 1250 ha. Irrigation performance was examined using the WinSRFR model for a large-sized field (8400 m × 500 m), continuously irrigated for 25 days but also under alternative designs and irrigation times. The performance was evaluated using efficiency, adequacy and uniformity criteria. The results demonstrate that the current irrigation practices are quite inefficient but could be substantially improved by adopting alternative design and operational strategies. A vertical division of the field (8400 m × 250 m) under the average inflow condition could result in a substantial increase in application efficiency (from less than 50% to over 70%), distribution uniformity (from 0.34 to 0.87), and irrigation adequacy (from 0.68 to 1). Additionally, the fields could be irrigated in considerably less time when an alternate irrigation schedule between two equally divided fields is followed, which indicated time savings of 40 % under a high inflow rate scenario (occurring during a large flood season), and a 20% reduction in time under an average inflow rate scenario (occurring during a medium flood season). Therefore, this modelling study has demonstrated a great potential to significantly improve irrigation performance by applying alternative field designs and operation strategies in the GAS. The modelling outcomes confirmed that the farmers’ indigenous experiment, though without a scientific study, on the vertical division of a large-sized field is indeed successful in improving irrigation performance, and could be adopted in other similar conditions.
Keywords: Field design; Gash agricultural scheme; Surface irrigation; WinSRFR (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419304706
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419304706
DOI: 10.1016/j.agwat.2019.105989
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().