Water stress alters physical and chemical quality in grains of common bean, triticale and wheat
Alberto do Nascimento Silva,
Maria Lucrecia Gerosa Ramos,
Walter Quadros Ribeiro,
Ernandes Rodrigues de Alencar,
Patrícia Carvalho da Silva,
Cristiane Andrea de Lima,
Christina Cleo Vinson and
Marcos Antonio Vanderlei Silva
Agricultural Water Management, 2020, vol. 231, issue C
Abstract:
Wheat, triticale and common bean are planted in both irrigated and rainfed conditions and may suffer the effects of water stress in both situations. The objective of this work was to evaluate the effect of water stress on the physical and chemical qualities of wheat (Triticum aestivum), triticale (Triticosecale wittmack) and common bean (Phaseolus vulgaris L.) grains. The experiment was conducted at the Embrapa Cerrados experimental station, in Planaltina, DF, Brazil. The experimental design was in randomized blocks with four replications. The treatments were composed of four water regimes (187 mm, 304 mm, 410 mm, 535 mm) applied to common bean (BRS Realce), two wheat genotypes (CPAC 0544 and BRS 404) and triticale (BRS Ulisses). The physical quality of grains was evaluated by the weight of a thousand grains (WTG) and color of the grains (represented by the luminosity (L*), chroma (C*) and hue angle (h*); the chemical quality was determined by protein, carbohydrate, lipid, ash, macro and microminerals contents. Water stress reduced grain yield of all species, however it did not reduce the weight of one thousand grains of the wheat genotype BRS 404, showing the potential of this cultivar, though it did lead to reduced WTG in common bean, triticale and the wheat genotype CPAC 0544. There was also a reduction of luminosity (L*) in the grains for both studied wheat genotypes, and chroma (C*) and hue angle (h*) for triticale. Water deficit also affected protein, carbohydrate, lipid and ash contents, with an increase in the protein content and a reduction in the carbohydrate and ash contents in common bean. In general, water stress reduced macro and micromineral contents in the grains, caused an undesirable change in the physical quality of the grains, and affected the chemical quality of the grains.
Keywords: Grain quality; Phaseolus vulgaris; Triticum aestivum; Triticosecale wittmack; Water availability (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419311734
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419311734
DOI: 10.1016/j.agwat.2020.106023
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().