EconPapers    
Economics at your fingertips  
 

Characteristics of carbon emissions in cotton fields under mulched drip irrigation

Rui Zong, Zhenhua Wang, Qiang Wu, Li Guo and Henry Lin

Agricultural Water Management, 2020, vol. 231, issue C

Abstract: As the second carbon storage pool, soil is easily influenced by human activities. Mulched drip irrigation is a water-saving irrigation technique used widely in arid and semi-arid regions. However, information about the response of CO2 exchange to mulched drip irrigation, such as the wetter and warmer soil, is limited. To identify the carbon emissions effects of mulched drip irrigation, we carried out a field experiment using drip irrigation with and without clear plastic mulching during the cotton growing seasons of 2015 and 2016. We monitored the temporal and spatial variation of soil moisture, soil temperature, cotton growth stage, biomass, lint yield, CO2 emissions, and the relationship between soil respiration rate and soil climate. The results showed that plastic mulching drip irrigation increased soil moisture and soil temperature, especially during the early and middle growth stages of cotton. The soil respiration rate was related positively to the higher soil temperature and moisture conditions promoted by plastic film mulching, although the coefficients of determination were low (R2 were 0.480 and 0.205, corresponding p-value was both 0.000, respectively). The highest value of soil respiration was obtained within the narrow rows under the drip tape, regardless of the practice of mulching or not. The soil respiration rate under plastic mulch in the narrow and wide rows were on average 28.35 % and 22.48 % higher than non-mulched control. Meanwhile, the amount of total CO2 emissions was significantly increased by 25.34 % and 28.90 % in these same rows, respectively (p-values were 0.006 at narrow rows and 0.010 at wide rows in the first year, and 0.000 at same rows in the second year). The differences of CO2 emission in the bare soil was not significant between mulched plots and non-mulched control (p-values were 0.757 and 0.918 in the first and second growing seasons, respectively). In addition, plastic mulching significantly improved the biomass and yield of cotton, by 61.49 % and 12.83 % on average (p-values were 0.034 and 0.039 in 2015, 0.024 and 0.032 in 2016), respectively. The results indicate that the application of drip irrigation under plastic mulch could increase soil water content and temperature, promote cotton growth, and improve lint yield. However, it may also lead to increased CO2 emissions, which can intensify the warming of the climate.

Keywords: Mulching; Soil CO2 emission; Cotton field; Oasis region; Drip irrigation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419316592
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419316592

DOI: 10.1016/j.agwat.2019.105992

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:231:y:2020:i:c:s0378377419316592