Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale
Seyed Hamidreza Sadeghi,
Ehsan Sharifi Moghadam,
Majid Delavar and
Mahdi Zarghami
Agricultural Water Management, 2020, vol. 233, issue C
Abstract:
The increasing demands of the population and the need for development obliged the optimal use and adaptive management of the watershed resources. Accordingly, it is necessary to adopt comprehensive measures to reach sustainable development goals. This objective can be achieved by the application of interdisciplinary and professional approaches through establishing dynamic and optimal balance in supply and demand resources. However, such important optimization approaches have been rarely practiced at the watershed scale. The present study has been therefore formulated to apply a linear water-energy-food nexus optimization for the Shazand watershed, Markazi Province, Iran. This approach was applied for planning 14 crops planted in orchard, irrigated farms, and rain-fed farms, between 2006 and 2014, and targeting water-energy-food nexus index (WEFNI) maximization. The connections among the water, energy, and food were then evaluated through determining the amount of consumption, mass productivity, and economic productivity of water and energy. The results of WEFNIs revealed that almond has the highest WEFNI with values of 0.92, 0.76, 0.76, 0.83, 0.86, 0.86, 0.87, 0.87, and 0.88. Whilst, potato with WEFNI of 0.05, 0.05, 0.05, 0.06, 0.09, 0.10 and 0.11, sugar cane with WEFNI of 0.10 and cucumber with WEFNI of 0.13 had the lowest scores and the corresponding lowest performance among the study crops. The outcomes of optimization study explained that the current situation of land use in the Shazand Watershed is unsuitable to minimize water and energy consumption and maximize benefit. The results can be used as an effective tool for designating proper soil and water resource management strategies in the region.
Keywords: Adaptive management; Land use optimization; Livelihood security; System dynamic; WEF nexus (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419315926
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:233:y:2020:i:c:s0378377419315926
DOI: 10.1016/j.agwat.2020.106071
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().