EconPapers    
Economics at your fingertips  
 

Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl millet, and Corn Under Water Limiting Condition

Bishwoyog Bhattarai, Sukhbir Singh, Charles P. West, Glen L. Ritchie and Calvin L. Trostle

Agricultural Water Management, 2020, vol. 238, issue C

Abstract: In the semi-arid Texas High Plains, declining irrigation water supply hinders the profitable corn (Zea mays L.) silage production, the principle feed ingredient of the beef and dairy industries. Drought-tolerant and deep-rooting crops like forage sorghum (Sorghum bicolor L.) and pearl millet (Pennisetum glaucum L.) could be an alternative to corn silage under limiting irrigation. A field study was conducted during 2018 and 2019 at New Deal, TX to assess soil water depletion patterns, water use efficiency (WUE), and silage yield of forage sorghum, pearl millet, and corn under limited irrigation. The experiment was conducted in split-plot design with three irrigation levels [I0 (55 and 29 mm), I1 (172 and 147 mm), and I2 (323 and 260 mm) in 2018 and 2019, respectively] as main-plots and five cultivars [P1498AM (corn), AF7401 and Silo700D (BMR sorghum), and Epic and Exceed (BMR pearl millet)] as sub-plots with three replications. The soil water depletion amount was greater in I0 (105 and 57 mm) followed by I1 (60 and 37 mm) and I2 (44 and 13 mm) in 2018 and 2019, respectively. Fresh biomass yield was the greatest in I2 followed by I1 and I0; however, the highest WUE was achieved in I0 and I2 in 2018 and 2019, respectively. Water depletion depth was greater for sorghum and pearl millet plots (0–1 m) than corn plots (0–0.6 m) which resulted in greater water depletion amount in sorghum (75 and 31 mm) and pearl millet (68 and 48 mm) plots than corn (67 and 28 mm) during 2018 and 2019, respectively. Average yield and WUE were the highest in sorghum cultivars, followed by pearl millet and corn. Results confirmed that the higher silage yield and WUE can be achieved by sorghum compared to pearl millet and corn under limited irrigation conditions.

Keywords: Deficit irrigation; Evapotranspiration; Semi-arid; Silage crop; Soil water extraction (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419320335
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:238:y:2020:i:c:s0378377419320335

DOI: 10.1016/j.agwat.2020.106206

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:238:y:2020:i:c:s0378377419320335