Evaluation of remote sensing-based evapotranspiration models against surface renewal in almonds, tomatoes and maize
Jingyuan Xue,
Khaled M. Bali,
Sarah Light,
Tim Hessels and
Isaya Kisekka
Agricultural Water Management, 2020, vol. 238, issue C
Abstract:
Evapotranspiration (ET) is a major hydrologic flux in water resources planning and irrigation management. While recent advances in remote sensing (RS) have enabled availability of high spatial and temporal resolution ET data, a lack of information related to error in the estimations has made it challenging to use this data for on-farm irrigation management decision making. In this study, three commonly used single-source RS based ET models (pySEBAL — a new version of the Surface Energy Balance Algorithm for Land; SEBS — Surface Energy Balance System algorithm; and METRIC — Mapping Evapotranspiration at High Resolution with Internalized Calibration) were used to estimate daily actual evapotranspiration (ETa) for almonds, processing tomatoes, and maize in the Central Valley of California. Model evaluation was conducted by comparing the predicted ETa from RS with in-situ measured ETa using surface renewal. Results indicated that the RS-based ETa estimations for all three models were within acceptable levels of uncertainty and agreed well with surface renewal estimates except for the underestimation by pySEBAL and METRIC during early season growth stages of processing tomatoes. This underestimation was attributed to the lack of accuracy when using single source ET models under lower vegetation cover condition (when ET is dominated by soil evaporation). Better estimates of ETa with pySEBAL and METRIC were detected at full cover, which explains the applicability of these two models to irrigation management during peak crop water demand. SEBS performed the best among the three RS-based models for daily ETa estimation for all crops. This suggests that SEBS-based ETa estimates can be adopted in operational irrigation management programs for farms that have not installed in field ETa sensors such as Tule Sensors (Tule Technologies Inc.). In addition, RS based ET is spatially distributed which can help to identity spatial variability between different irrigation zones.
Keywords: Remote sensing; Daily evapotranspiration; pySEBAL; METRIC; SEBS; Surface renewal (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420300639
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:238:y:2020:i:c:s0378377420300639
DOI: 10.1016/j.agwat.2020.106228
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().