EconPapers    
Economics at your fingertips  
 

Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel

Seydou Traore, Lei Zhang, Aytac Guven and Guy Fipps

Agricultural Water Management, 2020, vol. 239, issue C

Abstract: Rice yield responses forecast (YIELDCAST) is a very useful decision support tool in climate adaptation in Sahel, where crops are purely rainfed climate-stressors sensitive. This study aims to construct upland rice yield responses forecasting algebraic formulation code referred as YIELDCAST by using gene-expression programming (GEP) based on observed rainfall and temperatures data (1979–2011), and forcing with global climate model (GCM) downscaled outputs under CO2 emission scenarios SR-A1B, A2 and B1 (2012–2100) over Bobo-Dioulasso, a Sahelian region. Statistically, GEP is a capable tool to downscale climate variables in the region (R = 0.746−0.949), and construct reliable rice YIELDCAST tool (R = 0.930; MSE = 0.037 ton/ha; MAE = 0.155 ton/ha, RSE = 0.137 ton/ha). Yields forecasted (2012–2100) showed a noticeable statistically significant difference between scenarios; however, fluctuating with no substantial increase (average below 1.60 ton/ha); suggesting that the increase observed in temperatures and decrease in rains will either reduced or hindered yield to largely increase in Sahel. With no such YIELDCAST tool to support adaptation decision, Sahel will still be under the trap of the broad array of adaptation strategy, which is a trial and error, less specific and costly. The model can help anticipate adaptation decision support on-farm water management, shift to suitable planting periods, and use of improved drought resistant and short duration varieties adapted to a local weather pattern.

Keywords: YIELDCAST; Upland rice; Climate change; Adaptation decision support; Sahel; Gene-expression programming (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419315677
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:239:y:2020:i:c:s0378377419315677

DOI: 10.1016/j.agwat.2020.106242

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:239:y:2020:i:c:s0378377419315677