Neural computing modelling of the crop water stress index
Navsal Kumar,
Adebayo J. Adeloye,
Vijay Shankar and
Rabee Rustum
Agricultural Water Management, 2020, vol. 239, issue C
Abstract:
In this study, two artificial neural network models viz. supervised Feed-Forward Back Propagation (FF-BP) and unsupervised Kohonen Self-Organizing Map (K-SOM) have been developed to predict the Crop Water Stress Index (CWSI) using air temperature, relative humidity, and canopy temperature. Field experiments were conducted on Indian mustard to observe the crop canopy temperature under different levels of irrigation treatment during the 2017 and 2018 cropping seasons. The empirical CWSI was computed using well-watered and non-transpiring baseline canopy temperatures. The K-SOM and FF-BP CWSI predictions were compared with the empirical CWSI estimates and both performed satisfactorily. Of the two, however, the K-SOM was better with R2 (coefficient of determination) of 0.97 and 0.96 for model development and validation, respectively; corresponding values for FF-BP were 0.86 and 0.75. The results of the study suggest that neural network modelling offers significant potential for reliable prediction of the CWSI, which can be utilized in irrigation scheduling and crop stress management.
Keywords: Artificial neural networks; Self-organizing map; Taylor diagram; Crop water stress index; Indian mustard (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420306880
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:239:y:2020:i:c:s0378377420306880
DOI: 10.1016/j.agwat.2020.106259
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().