EconPapers    
Economics at your fingertips  
 

Analytical solutions of space fractional Boussinesq equation to simulate water table profiles between two parallel drainpipes under different initial conditions

Behrouz Mehdinejadiani and Parviz Fathi

Agricultural Water Management, 2020, vol. 240, issue C

Abstract: This work presents the first attempt to derive analytical solutions of a space fractional Boussinesq equation (SFBE) for parabola type 1, parabola type 2, and elliptical initial water table profiles, denoted as SFBE-P1, SFBE-P2, and SFBE-E, respectively. Laboratory and field data published in literature were used to evaluate the performances of the fractional models in homogeneous and heterogeneous soils. Besides, the performances of the proposed fractional models were compared with that of a fractional analytical solution developed in the literature for a flat initial water table condition (SFBE-F). According to the results of the sensitivity analysis, heterogeneity degree of soil (α) had a more effect on outputs of the fractional models. Also, the results indicated that the α parameter in the SFBE-P1, SFBE-E, and SFBE-F was capable of describing well the heterogeneity degree of soil. The α value was estimated almost 2 in relatively homogenous soil, while its values were respectively appraised almost 1.3 and 1.1 in soils with average and relative heterogeneity degrees. The fractional models reduced to their counterpart classical ones (BE-P1, BE-P2, BE-E, and BE-F) in the relatively homogenous soil. The measurement and prediction results demonstrated the best and similar performance for the SFBE-E and SFBE-F models, while the SFBE-P2 models was the weakest. This behavior was also observed by using the classical models. Compared to the BE-E, the SFBE-E provided better prediction results in the heterogeneous soils. Overall, the SFBE-E and SFBE-F can be applied as practical models to simulate water table profile between two parallel drainpipes for both homogeneous and heterogeneous soils.

Keywords: Elliptical initial water table profile; Fractional differentiation order; Heterogeneity degree; Scale-dependent; Subsurface drainage (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419312764
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:240:y:2020:i:c:s0378377419312764

DOI: 10.1016/j.agwat.2020.106324

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:240:y:2020:i:c:s0378377419312764