EconPapers    
Economics at your fingertips  
 

Tetragonia tetragonioides (Pallas) Kuntz. as promising salt-tolerant crop in a saline agricultural context

Giulia Atzori, Werther Nissim, Tania Macchiavelli, Federico Vita, Elisa Azzarello, Camilla Pandolfi, Elisa Masi and Stefano Mancuso

Agricultural Water Management, 2020, vol. 240, issue C

Abstract: The lack of natural resources, especially good-quality cropland and renewable water resources is threatening food production potential in marginal agricultural ecosystems, which are already negatively affected by climate change. Since the world's major crops are proving inadequate to supply the calories and nutrients for people in these areas, new crops are sought that can withstand harsh ecological environmental conditions. In the current trial, we assessed the growth and productivity of Tetragonia tetragonioides (Pallas) Kuntz. in a floating hydroponic system supplied with different seawater proportions (i.e. 15% and 30% seawater, EC = 9.8 and 18.0 dS m−1). Moreover, the effects of different salinity levels on mineral elements accumulation, production of osmotic solutes and secondary metabolites were determined, along with the salt removal capacity of the crop. The results indicated that plant growth was not affected by either of the seawater treatments used in this study. The increased leaf succulence and the reduction of both leaf area and specific leaf area with increasing salinity might represent an essential feature of this salt-tolerant species associated to the plants need of limiting transpiration. Low seawater treated plants showed a significantly higher biomass yield per liter of (sea)water used (117%) than the control. Under these conditions plants accumulated the highest amount of Mg (+31% and 48% in medium and high seawater treated plants compared with the control) and Cu (+14% and 30%, respectively) along with increasing proline and decreasing nitrate concentrations. By contrast, we found that seawater supply resulted in a Na-enriched leaf biomass that may represent an issue for human health. We concluded that Tetragonia tetragonioides can be grown in saline agriculture up to a salinity level characterized by an EC of 18 dS m-1 but further investigation is required to address Na accumulation in leaves.

Keywords: New Zealand spinach; Saline agriculture; Hydroponics; Seawater irrigation; Salt-tolerant crop; Salt removing crop; Seawater footprint (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837741932205X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:240:y:2020:i:c:s037837741932205x

DOI: 10.1016/j.agwat.2020.106261

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:240:y:2020:i:c:s037837741932205x