EconPapers    
Economics at your fingertips  
 

Effects of irrigation regimes on yield and quality of upland rice and paddy rice and their interaction with nitrogen rates

Yajie Zhang, Gaosheng Liu, Wenxin Huang, Jingnan Xu, Yadan Cheng, Chen Wang, Tao Zhu and Jianchang Yang

Agricultural Water Management, 2020, vol. 241, issue C

Abstract: The study of water-nitrogen (N) interaction to improve crop drought resistance and reduce environmental pollution has increasingly become a hot topic. However, the response of yield and quality of paddy rice and upland rice to N nutrition under different irrigation regimes is little known. Continuous flooding cultivation (CF, control) and bare-dry cultivation (BD) were used to cultivate paddy rice cultivar Yangjing 687 (japonica) and upland rice cultivar Zhonghan 3 (japonica), and 3 N application rates, 140 (low N, LN), 210 (normal N, NN) and 280 kg ha−1(high N, HN), were set for each irrigation regime. The results showed that under BD and CF irrigation regimes, the yield of paddy rice was the highest at NN, while that of upland rice was the highest at BD with NN and at CF with HN, breakdown viscosity was the highest and setback viscosity was the lowest for paddy rice at LN and for upland rice at NN. Increasing N application, the chalky kernels percentage and the chalkiness of upland rice increased first and then decreased, while that of paddy rice decreased under BD and increased under CF. Compared with CF, BD made the seed setting percentage and 1000-grain weight of upland rice and paddy rice different, and improved the appearance and nutritional quality of upland rice. The correlation between the cooking and nutritional quality and leaf N content of upland rice was lower than that of paddy rice. These results suggest that the yield and cooking quality of upland rice were high under BD with NN, and the paddy rice yield was high under BD with NN or CF with NN.

Keywords: Rice; Irrigation regime; Nitrogen application rate; Yield; Quality (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419319626
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377419319626

DOI: 10.1016/j.agwat.2020.106344

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377419319626