EconPapers    
Economics at your fingertips  
 

Meeting agricultural and environmental water demand in endorheic irrigated river basins: A simulation-optimization approach applied to the Urmia Lake basin in Iran

Amir Hossein Dehghanipour, Gerrit Schoups, Bagher Zahabiyoun and Hossein Babazadeh

Agricultural Water Management, 2020, vol. 241, issue C

Abstract: Competition for water between agriculture and the environment is a growing problem in irrigated regions across the globe, especially in endorheic basins with downstream freshwater lakes impacted by upstream irrigation withdrawals. This study presents and applies a novel simulation-optimization (SO) approach for identifying water management strategies in such settings. Our approach combines three key features for increased exploration of strategies. First, minimum environmental flow requirements are treated as a decision variable in the optimization model, yielding more flexibility than existing approaches that either treat it as a precomputed constraint or as an objective to be maximized. Second, conjunctive use is included as a management option by using dynamically coupled surface water (WEAP) and groundwater (MODFLOW) simulation models. Third, multi-objective optimization is used to yield entire Pareto sets of water management strategies that trade off between meeting environmental and agricultural water demand. The methodology is applied to the irrigated Miyandoab Plain, located upstream of endorheic Lake Urmia in Northwestern Iran. Results identify multiple strategies, i.e., combinations of minimum environmental flow requirements, deficit irrigation, and crop selection, that simultaneously increase environmental flow (up to 16 %) and agricultural profit (up to 24 %) compared to historical conditions. Results further show that significant temporary drops in agricultural profit occur during droughts when long-term profit is maximized, but that this can be avoided by increasing groundwater pumping capacity and temporarily reducing the lake’s minimum environmental flow requirements. Such a strategy is feasible during moderate droughts when resulting declines in groundwater and lake water levels fully recover after each drought. Overall, these results demonstrate the usefulness and flexibility of the methodology in identifying a range of potential water management strategies in complex irrigated endorheic basins like the Lake Urmia basin.

Keywords: Environmental flow requirement; Conjunctive use; WEAP; MODFLOW; Multi-objective optimization; Drought (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420309306
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420309306

DOI: 10.1016/j.agwat.2020.106353

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420309306