Irrigation management of European greenhouse vegetable crops
Luca Incrocci,
Rodney B. Thompson,
María Dolores Fernandez-Fernandez,
Stefania De Pascale,
Alberto Pardossi,
Cecilia Stanghellini,
Youssef Rouphael and
Marisa Gallardo
Agricultural Water Management, 2020, vol. 242, issue C
Abstract:
In Europe, most greenhouse vegetable crops are grown in soil. Where soilless systems are used, apart from in The Netherlands, Belgium and France, they are mostly free-draining systems, in which nutrient solutions are not recirculated. Both soil-grown and free-draining soilless systems commonly have large nitrate (NO3−) leaching loss. Irrigation is a major contributing factor to NO3− leaching loss. Irrigation management of greenhouse vegetable crops needs to be improved to reduce the appreciable N loss to subterranean water and surface water bodies. This article reviews the state-of-the-art, of methods and tools that are available, or are being developed, to optimise irrigation management of both soil- and soilless-grown vegetable crops in greenhouses. Adaptions for greenhouse conditions and cropping cycles of the FAO56 approach to calculate crop water requirements are reviewed. Attention is paid to (i) the developments and suitability of various adaptations of the Penman–Monteith FAO56 equation and simpler equations to calculate reference crop evapotranspiration (ETO), and (ii) equations to calculate crop coefficient (Kc) values under greenhouse conditions, in which cropping cycles may differ appreciably from those of outdoor crops. The various classes of soil/substrate moisture sensors that have been used in greenhouse crops are reviewed, regarding their general suitability and practical use. Their use in both soil and substrate is considered, as are the effects of salinity and the use of some sensors to measure the salinity of the growing media. The use of various plant sensors with vegetable crops under greenhouse conditions is reviewed. The results of a survey that assessed, for greenhouse vegetable crops in Europe, the use of different (a) types of irrigation systems, and (b) irrigation management methods, for both soil and soilless production are presented. Following the revision of this information, recommendations are made regarding the scientific and practical value of the available tools and technologies to aid growers to optimise irrigation management of vegetable crops grown in greenhouses.
Keywords: Bio-stimulants; Crop evapotranspiration; Grafting; Irrigation scheduling; Mulching; Soilless; Soil sensors; Water use efficiency (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420308209
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:242:y:2020:i:c:s0378377420308209
DOI: 10.1016/j.agwat.2020.106393
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().