A paradigm of GIS and remote sensing for crop water deficit assessment in near real time to improve irrigation distribution plan
Wasif Yousaf,
Wakas Karim Awan,
Muhammad Kamran,
Sajid Rashid Ahmad,
Habib Ullah Bodla,
Mohammad Riaz,
Muhammad Umar and
Khurram Chohan
Agricultural Water Management, 2021, vol. 243, issue C
Abstract:
This study comprehensively used Remote Sensing (RS) and GIS for independently monitoring crop water adequacy in response to existing irrigation management system in Bari Doab, Pakistan. Canals’ rotation plan is developed before start of each cropping season to distribute water on fixed turn basis. The study combines the moderate (Landsat-8) and low resolution (MODIS) satellite imagery to assess near real time crop water deficit in canal command areas (CCAs) of the study area. Landsat imagery were used to develop crop classification and determine cropping pattern using time series of NDVI. MODIS’ NDVI product was employed to monitor the current crop health and develop annual reference NDVI cycle based on last 13 years’ imagery. Climatic data of WMO stations combined with DEM have also been used to determine reference evapotranspiration based on Penman-Monteith method. These inputs were combined to estimate average crop water deficit in CCAs for ongoing cropping season on 08-day interval, the interval parallel to the canal rotation plan. RS based reflectance crop coefficients (KCR) of current and reference crop cycle were developed to calculate potential and actual evapotranspiration, and then translated their difference into crop water deficit. Lag time of 08–10 days is limitation of the study due to satellites overpass time, but it can still prove very helpful considering the crop season spanned over 160–180 days. Results revealed that maximum crop water deficit (up to 9 mm) occurred in CCAs during crop growing (mid) stage. Crop water deficit showed inverse relation when plotted against intense rainfall months. Crop water deficit results could be helpful for irrigation managers to modify canals’ rotation plan in near real time according to crop health and growing stage. It would not only help in achieving equitable water distribution but also assuring supplies when required by the crops.
Keywords: Crop water deficit; Remote sensing; Evapotranspiration; NDVI (Normalized Difference Vegetation Index); Crop coefficients; Canal command area (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419317202
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419317202
DOI: 10.1016/j.agwat.2020.106443
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().