EconPapers    
Economics at your fingertips  
 

Application of high-resolution meteorological data from NCAM-WRF to characterize agricultural drought in small-scale farmlands based on soil moisture deficit

Minki Hong, Sang-Hyun Lee, Seung-Jae Lee and Jin-Yong Choi

Agricultural Water Management, 2021, vol. 243, issue C

Abstract: We discussed the applicability of high-resolution meteorological data simulated by the NCAM-Weather Research and Forecasting (NCAM-WRF) model to investigate spatially distributed soil-moisture deficits in site-scale farmland areas. A gridded soil water budget model was developed to utilize the 90 m NCAM-WRF meteorological data to predict soil moisture content (SMC) at multiple depths. The applicability of the NCAM-WRF climatic variables to predict SMC was evaluated by comparing the SMC estimates with in-situ observations at the monitoring site. We used the Quantile Mapping (QM) method to correct the biases of NCAM-WRF precipitation outputs. The SMC estimates derived from the newly developed soil water budget model showed a good agreement with observations, and we proved that the bias-corrected NCAM-WRF precipitation data could improve the predictability of the temporal evolution of SMCs. For characterizing agricultural drought during the crop growing season, we presented a novel approach to estimate the magnitude, duration, and severity of agricultural drought events based on crop's critical pressure head. We mapped the distribution of SMC, soil matric potential (SMP), and drought severity at the 90-m resolution, and the results showed that applying the NCAM-WRF climatic variables to the modeling of SMC/SMP profiles can lead to drought characterization on site-scale while accounting for the spatial variability of rainfall and other climatic variables.

Keywords: Agricultural drought; High-Resolution meteorological data; Soil matric potential; Soil moisture deficit; Quantile mapping (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377419323406
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419323406

DOI: 10.1016/j.agwat.2020.106494

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377419323406