Higher canopy transpiration rates induced dieback in poplar (Populus × xiaozhuanica) plantations in a semiarid sandy region of Northeast China
Lining Song,
Jiaojun Zhu,
Ting Zhang,
Kai Wang,
Guochen Wang and
Jianhua Liu
Agricultural Water Management, 2021, vol. 243, issue C
Abstract:
Poplar (Populus × xiaozhuanica) plantations play an important role in controlling desertification in semiarid sandy regions of Northeast China, but their dieback occurs frequently in extreme drought years due to greater water loss by transpiration than water uptake. However, little is known about dynamics of canopy transpiration in poplar plantations, which limits our understanding of dieback mechanisms and proper management of these poplar plantations. Here, canopy transpiration and canopy conductance in 18-year-old poplar plantations were quantified by sap flow measurements in combination with monitoring of concurrent environmental variables during two consecutive growing seasons in normal and wet years (2018 and 2019). Results showed that daily canopy transpiration averaged 1.2 mm d−1 (between 0.3 and 1.9 mm d−1) and 1.5 mm d−1 (between 0.2 and 2.4 mm d−1) in 2018 and 2019, respectively. Solar radiation explained more variability of daily canopy transpiration than vapor pressure deficit (VPD) in both years, indicating that canopy transpiration was more controlled by radiation than by VPD. Total canopy transpiration during the growing seasons in 2018 and 2019 was 184.1 mm and 235.9 mm, respectively, accounting for 47.1 % and 44.2 % of precipitation over the same period. Sum of canopy transpiration, soil evaporation and change in soil water storage was higher than precipitation in most months, indicating that trees took up water from deep soil layer (>1.0 m) and groundwater. Additionally, canopy conductance averaged 1.4 m s−1 and 1.9 m s−1 in 2018 and 2019, respectively, and decreased significantly with increasing VPD. However, sensitivity of canopy conductance to VPD decreased from 0.62 in 2018 to 0.27 in 2019, indicating a shift from more to less strict stomatal regulation. These findings indicate that poplar plantations are vulnerable to dieback during extreme drought years with decline in groundwater level due to utilization of groundwater for higher canopy transpiration rate.
Keywords: Sap flow; Solar radiation; Vapor pressure deficit; Groundwater; Canopy conductance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420304078
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420304078
DOI: 10.1016/j.agwat.2020.106414
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().