EconPapers    
Economics at your fingertips  
 

Influence of water management techniques on milling recovery, grain quality and mercury uptake in different rice production systems

Muhammad Ishfaq, Nadeem Akbar, Usman Zulfiqar, Nauman Ali, Mumtaz Ahmad, Shakeel Ahmad Anjum and Muhammad Farooq

Agricultural Water Management, 2021, vol. 243, issue C

Abstract: Reducing water inputs, by maintaining grain yield quality, is important for sustainable production of rice. This study was conducted to investigate the influence of different water management techniques on milling recovery, grain quality, and mercury uptake in rice under dry direct-seeded and transplanted production systems. Two aromatic rice cultivars (Basmati-515 and Chenab Basmati) were planted in conventional puddled-transplanted rice (TPR) and dry direct-seeded rice (DDSR). Three irrigation management systems, based on soil moisture tension (SMT), continuous flooding (> −10 kPa SMT), alternate wetting and drying (AWD) (−20 kPa SMT) and aerobic rice (−40 kPa SMT) were maintained. Rice planting in DDSR system performed comparable to TPR, however, percentage of broken rice, chalky kernels, abortive kernels and opaque kernels were higher (5–8 %, 20 %, 19 % and 25 %, respectively) under DDSR system. However, kernel amylopectin contents and mercury uptake were reduced by 9% and 11 % under DDSR system. In AWD irrigation management, substantial increase in brown head rice (11 %), white head rice (15 %) and kernel protein contents (11 %) were recorded as compared to aerobic irrigation management. However, AWD irrigation reduced the kernel chalkiness (42 %), abortive kernels (51 %) and opaque kernels (62 %) as compared to aerobic irrigation management. Moreover, the AWD irrigation threshold also reduced the kernel amylose contents (15 %), amylopectin contents (6%) and mercury uptake (21 %) in comparison to continuous flooded irrigation threshold. In conclusion, AWD improved the milling recovery as well as grain quality and reduced the mercury uptake under TPR and DDSR in both rice cultivars. Rice cultivation under DDSR in combination with AWD can help to improve the quality traits while reducing the total water inputs and heavy metal accumulation.

Keywords: Production system; Alternate wetting and drying; Aerobic rice; Milling recovery; Mercury uptake; Appearance quality (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420307496
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420307496

DOI: 10.1016/j.agwat.2020.106500

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:243:y:2021:i:c:s0378377420307496