New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain
Juan Antonio Bellido-Jiménez,
Javier Estévez and
Amanda Penélope García-Marín
Agricultural Water Management, 2021, vol. 245, issue C
Abstract:
The estimation of Reference Evapotranspiration (ET0) is crucial to estimate crop water requirements, especially in developing countries and areas with scarce water resources. In these regions, the impossibility of collecting all the required data to compute FAO-56 Penman–Monteith equation (FAO56-PM) makes scientists search new methodologies to accurately estimate ET0 with the minimum number of climatic parameters. In this work, several neural network approaches have been evaluated for estimating ET0 using datasets from five weather stations located in Southern Spain (semiarid region of Andalusia). The assessment of statistical performance (Root Mean Square Error -RMSE-, Mean Bias Error -MBE-, coefficient of determination -R2- and Nash-Sutcliffe model efficiency coefficient -NSE-) of models namely Multilayer perceptron (MLP), Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM), Support Vector Machines (SVM), Random Forest (RF) and XGBoost were carried out using different input variables configurations. Only temperature-based data were used as inputs; the calculation of new variables called EnergyT (the integral of the half hourly temperature values of a day) and Hourmin (the difference in hours between time sunset and the time when the maximum temperature occurs) had promising results for the most humid stations. The good results obtained with EnergyT when it is used as an input of the system demonstrated that the information contained on it gives detailed characterization of the daily thermic behavior at each location, resulting in a more efficient model than those using only daily maximum, minimum temperature and extraterrestrial radiation values. In general, the modeling results showed that no model firmly outperformed the others, although MLP and ELM were commonly the models that gave the best performances for all sites: mean values of R2 > 0.89, mean values of NSE > 0.88, mean values of RMSE < 0.67 mm/day and mean values of MBE ranging from −0.17 to 0.30 mm/day. Therefore, EnergyT and Hourmin can be used to estimate ET0 more accurately in stations where data acquisition is limited, like in developing countries or at low-cost weather stations that cannot collect all the required meteorological variables used in FAO56-PM. Overall, the use of ELM is recommended due to its high performance in terms of efficiency (NSE) for all the configurations and for all locations, especially using EnergyT as an input variable.
Keywords: Irrigation scheduling; Machine learning; Reference evapotranspiration (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420321053
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321053
DOI: 10.1016/j.agwat.2020.106558
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().