Water distributions of low-pressure sprinklers as affected by the maize canopy under a centre pivot irrigation system
Xin Hui,
Yudong Zheng and
Haijun Yan
Agricultural Water Management, 2021, vol. 245, issue C
Abstract:
Selection of a suitable low-pressure sprinkler can be an effective measure to reduce energy consumption, wind drift and evaporation losses. The crop canopy often redistributes the applied water during sprinkler irrigation. Therefore, we investigated the water distributions above and below the canopy as well as their differences in Heermann and Hein uniformity coefficient (CUH) under three commonly used sprinkler types (Nelson D3000, Nelson R3000, and Komet KPT) and two growth stages of summer maize (6-leaf stage and tasselling stage) to evaluate the effect of crop canopy on the water distribution of low-pressure sprinklers. The variations in the soil water content (SWC) and Heermann and Hein uniformity coefficient of soil water content (CUHS) were investigated further at 1 h before, 1 h after, and 24 h. Additionally, the effects of growth indices and sprinkler types on CUH and CUHS values were analysed. Both the water application depths and CUH values above the canopy were significantly higher than those below the canopy and the differences above and below the canopy increased significantly with the growth of maize. The CUHS after irrigation mainly depended on the initial SWC and CUHS values but was minimally correlated with the plant height, leaf area index, and sprinkler application uniformity. Although the CUH above the canopy (78.1%) of D3000 was significantly lower than R3000 and KPT sprinklers (both exceeding 90%), the CUHS of D3000 reached more than 93% after irrigation. This result indicated that the effect of sprinkler application uniformity was not important as predicted, and a good CUHS would be achieved after canopy interception and soil water redistribution irrespective of sprinkler types. This study provides an insight into the selection of best low-pressure sprinklers in centre pivot irrigation systems.
Keywords: Low-pressure sprinkler; Water distribution; Maize canopy; Irrigation uniformity; Soil water content; Centre pivot (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420321909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321909
DOI: 10.1016/j.agwat.2020.106646
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().