EconPapers    
Economics at your fingertips  
 

Water productivity and its allometric mechanism in mulching cultivated maize (Zea mays L.) in semiarid Kenya

Xiao-Feng Zhang, Chong-Liang Luo, Hong-Xu Ren, David Mburu, Bao-Zhong Wang, Levis Kavagi, Kiprotich Wesly, Aggrey Bernard Nyende and You-Cai Xiong

Agricultural Water Management, 2021, vol. 246, issue C

Abstract: Allometry is extensively used to describe the scaling relationship between individual size and metabolite allocation. Micro-field rain-harvesting system can improve soil water availability and thus alter the allocation of individual biomass among organs. Yet the eco-physiological mechanism based on allometric scaling theory has been little investigated under various mulching conditions. A field experiment was conducted using maize variety Yuyuan7879 in Juja, Kenya for two growing seasons (cross-year) from 2015 to 2016, and from 2016 to 2017 respectively. Four treatments were designed as ridge-furrow mulching (RFM) with black plastic mulching (RFMB), transparent plastic mulching (RFMT), grass straw mulching (RFMG) and conventional flat planting (CK). We found that RFMB, RFMT and RFMG significantly increased grain yield by 106%, 109% and 32% in 2015, and 101%, 96% and 30% in 2016 respectively, in comparison with CK. Mulching treatments improved soil temperature and moisture and significantly increased crop water productivity (CWP). Mulching treatments drastically changed the allometric relationship between metabolic rate (leaf biomass) and individual size (lgy = αlgx + lgβ), and optimized the size-dependent reproductive allocation. In the relationship between leaf biomass (y-axis) vs aboveground biomass (x-axis), mulching treatments significantly declined the value of α (α < 1; P < 0.01), suggesting that less photosynthetic product was allocated in leaves in mulching treatments than in CK. As for the allometric relationship between grain yield and aboveground biomass, the α was generally significantly more than 1 in RFMB and RFMT, and significantly less than 1 in RFMG and CK, demonstrating that more photosynthates were allocated to reproductive growth under plastic mulching. Also, the variation of allometric relationship between reproductive and vegetative biomass provided further evidence that plastic mulching facilitated substance transportation from vegetative to reproductive organs. In conclusion, plastic mulching significantly improved soil hydrothermal condition, increased individual reproductive allocation and ultimately improved grain yield and CWP at population level.

Keywords: Ridge-furrow mulching; Maize; Reproductive allocation; Allometric relationship; Semiarid Kenya (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377420321910
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420321910

DOI: 10.1016/j.agwat.2020.106647

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:246:y:2021:i:c:s0378377420321910