EconPapers    
Economics at your fingertips  
 

Effect of regulated deficit irrigation on alfalfa performance under two irrigation systems in the inland arid area of midwestern China

Minguo Liu, Zikui Wang, Le Mu, Rui Xu and Huimin Yang

Agricultural Water Management, 2021, vol. 248, issue C

Abstract: Irrigation plays a fundamental role in sustanining the productivity of agricultural systems in the inland arid area of midwestern China. Deficit irrigation can help to balance yield outcome and water input. Few studies have investigated the impact of deficit irrigation on alfalfa performance, which shows great differences from grain crops in water requirement and management strategy. The study aimed to evaluate the effect of regulated deficit irrigation on forage yield and quality of alfalfa (Medicago sativa). A three year trial was carried out with two irrigation systems (flood irrigation, FI and subsurface drip irrigation, SDI) and seven contrasting regulated irrigation treatments, and alfalfa growth, productivity and water use were measured. Under both irrigation systems, alfalfa forage yield decreased with decreasing irrigation amount under whole stage irrigation, while forage quality improved. However, the performance of alfalfa was different when deficit irrigation was applied at various growth stages. Compared with other deficit irrigation treatments, regulated deficit irrigation at single growth stage usually led to a higher yield. There was an exponential relationship between plant height and forage yield (R2 = 0.62 for FI and R2 = 0.57 for SDI) and a linear relationship between leaf area index and forage yield (R2 = 0.56 for FI and R2 = 0.64 for SDI). There was a negative correlation between forage yield and quality, which was closer to some quadratic relationships. Therefore, regulated deficit irrigation can help to achieve an ideal yield (up to 34.9 t/ha) and quality in this area. In the inland arid area of midwestern China, subsurface drip irrigation showed a higher irrigation water use efficiency (13.8–84.4 kg/(ha mm)) than flood irrigation (10.8–66.6 kg/(ha mm)) for alfalfa production. With limited water supply, deficit irrigation at single growth stage usually maintained a higher forage yield compared to slightly stressed irrigation during the whole growth. Deficit irrigation at the branching stage led to more negative effect on forage yield compared to other single stages.

Keywords: Lucerne; Dry matter yield; Forage quality; Irrigation water use efficiency; Flood irrigation; Subsurface drip irrigation; Regulated deficit irrigation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421000299
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000299

DOI: 10.1016/j.agwat.2021.106764

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000299