EconPapers    
Economics at your fingertips  
 

Estimation of evapotranspiration and crop coefficient of drip-irrigated orange trees under a semi-arid climate

Mohammad Jafari, Hamidreza Kamali, Ali Keshavarz and Akbar Momeni

Agricultural Water Management, 2021, vol. 248, issue C

Abstract: A sustainable agricultural system requires increasing water use efficiency and enhancing knowledge of crop water use. This prerequisite is more pronounced in the regions with inadequate water resources and limited observational data such as southern Iran. Therefore, this study aimed at finding the water requirement of mature orange trees (Citrus sinensis (L.) Osbeck, cv. Tarocco Ippolito) by identifying standard evapotranspiration rate and crop coefficients (single and dual). Seventy-two orange trees in a drip-irrigated orchard with loam soil were classified into six treatments and irrigated at 100%, 90%, 80%, 70%, 60%, and 50% of reference evapotranspiration rate during 2017 and 2018. Soil moisture variability and crop physiological responses, including stem water potential (Ψstem), net photosynthesis (An), and stomatal conductance (gs) were measured. Our results showed that irrigating at 90% ETo provided the full water requirements of the trees. The mean crop evapotranspiration rate was calculated as 5.2 mm day−1, with the crop coefficient ranging from 0.65 to 0.95. The average irrigation rate performed traditionally in the region was 19% higher than the actual requirement. Analysis of physiological response highlighted the controlling role of stomata in regulating transpiration and maintaining leaf turgor. During the peak water-stress, gs ranged from 0.11 to 0.12 molm−2 s−1 in fully irrigated trees, to 0.04–0.08 molm−2 s−1 in highly stressed trees. Our findings will provide a useful guideline for the local growers and agencies to achieve better irrigation scheduling and higher water productivity for the region.

Keywords: Crop coefficients; Evapotranspiration; Stem water potential; Stomatal conductance; Water productivity (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421000342
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000342

DOI: 10.1016/j.agwat.2021.106769

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:248:y:2021:i:c:s0378377421000342