EconPapers    
Economics at your fingertips  
 

Modeling impacts of climate change on the water needs and growing cycle of crops in three Mediterranean basins

I. Funes, R. Savé, F. de Herralde, C. Biel, E. Pla, D. Pascual, J. Zabalza, G. Cantos, G. Borràs, J. Vayreda and X. Aranda

Agricultural Water Management, 2021, vol. 249, issue C

Abstract: In this study, the suitability of major crops currently growing in three case study basins in Catalonia (NE Spain) was assessed for the first half of the 21st century. For this purpose, an estimation was made of net hydric needs (NHN) and a set of agroclimatic parameters. Climate change impacts were estimated at sub-basin level using temperature and precipitation temporal series based on the Third Report on Climate Change in Catalonia under the RCP4.5 scenario. Potential crop evapotranspiration (ETc, FAO procedure) and monthly water balance considering soil water holding capacity were used to estimate actual evapotranspiration (ETa) and NHN. Over the period studied, NHN would generally rise, with small (+ 0.1%) to high (+ 6.6%) increases in the 2020 s and moderate (+ 3.9%) to high (+ 6.7%) increases in the 2040 s. Dynamics would be different for the three basins and general trends vary from crop to crop. At all events, a generalized increase in NHN together with lower water availability could severely limit crop productivity in the case of both rainfed and irrigated crops (irrigation restrictions). Phenological changes could represent a greater constraint for crop productivity. Overall, the number of frost days will decrease (from −0.1 days in March to −8.7 days in April) in the three basins, while extremely hot days will increase (from + 0.3 days in July to + 3.8 days in August). Growth cycles will begin earlier (from −1 days to −12 days for crops with a base temperature of 10 °C), and for some crops they will be shorter (from −8 days to −27 days in the case of maize and up to −10 days in the case of vines). The impacts of climate change in the three basins could result in significant limitations for crops if adaptive strategies beyond irrigation and growing cycle issues are not applied. The results of this study could serve as a basis for the development of adaptation strategies to improve and maintain agriculture in the case study basins and in similar regions.

Keywords: Watershed; Agriculture; Net hydric needs; Crop phenology; Adaptation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421000627
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000627

DOI: 10.1016/j.agwat.2021.106797

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000627