EconPapers    
Economics at your fingertips  
 

Effects of different irrigation levels on plant water status, yield, fruit quality, and water productivity in a drip-irrigated blueberry orchard under Mediterranean conditions

Samuel Ortega-Farias, Sergio Espinoza-Meza, Rafael López-Olivari, Miguel Araya-Alman and Marcos Carrasco-Benavides

Agricultural Water Management, 2021, vol. 249, issue C

Abstract: As blueberries are susceptible to water stress and their future cultivation in semiarid Mediterranean areas will be challenged by drought, irrigation management strategies will be needed to optimize water productivity and maintain sufficient levels of fruit yield and quality. This study aim was to evaluate the effect of different irrigation levels on plant water status, yield, fruit quality, and water productivity in a drip-irrigated rabbiteye blueberry (Vaccinium ashei Reade 'Tifblue') orchard. Four irrigation treatments based on crop evapotranspiration (ETc) were applied to blueberry plants during two consecutive growing seasons (2012/2013 and 2013/2014): 125 (farmers’ irrigation management, T1), 100 (T2), 75 (T3), and 50 (T4) % ETc. During the study, the average values of midday stem water potential (Ψstem) were −0.85, −0.86, −0.97 and −1.11 MPa for the T1, T2, T3, and T4 treatments, respectively. Fruit weight (FW), yield (Y), fruits per plant (FP), soluble solids (SS), and the water stress integral (WSI) were significantly affected by the irrigation treatments. The water productivity (WP), juice pH, and weight/volume ratio were statistically similar among the treatments. The highest values of Y, FP, and FW were observed in the T1 and T2 treatments, while the lowest values were found in the T4 treatment. In addition, the Y, FP, FW and WSI in the T1 and T2 treatments were significantly similar, but the total water application in the T2 treatment was between 20% and 27% lower than that in the T1 treatment. For the T1 and T2 treatments, the values of Y were between 8.8 and 9.4 kg plant −1, and the Ψstem was >−0.85 MPa during the two growing seasons. The interaction between irrigation treatments and growing season was only significant for the FW, with the lowest values observed in the T4 treatment during the 2012/2013 growing season.

Keywords: Deficit irrigation; Irrigation scheduling; Midday stem water potential; Water savings (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421000706
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000706

DOI: 10.1016/j.agwat.2021.106805

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000706