Assessing impacts of climate variability and changing cropping patterns on regional evapotranspiration, yield and water productivity in California’s San Joaquin watershed
Jingyuan Xue,
Zailin Huo and
Isaya Kisekka
Agricultural Water Management, 2021, vol. 250, issue C
Abstract:
Climate variability and changing cropping patterns are two main factors directly influencing catchment hydrological processes and agricultural productivity. Assessing the response of hydrological processes and agricultural production to the combined impacts is of great importance for enhancing water resources management, water productivity and agriculture sustainability. SWAT (Soil and Water Assessment Tools) models embedded with 2007 and 2018 land use were built for the San Joaquin watershed (SJWS) in California’s Central Valley. Global sensitivity analysis were conducted to select parameters that have the largest influence on evapotranspiration (ET) processes. The model was calibrated and validated produced good agreement for monthly ET from remote sensing and yield of 8 major crops using county level reported yields during the periods of 2001–2009 and 2010–2018. Based on the outputs of the calibrated SJWS SWAT model, regional ET showed a significant increase, which was caused by rises in temperature and changing cropping patterns associated with increase in area under nut crop production. Seven major crop yields increased excluding alfalfa, implying that the impacts of increasing temperature and small decreases in precipitation were not dominant factors in explaining observed changes in yield. From periods 2001–2009–2010–2018, total water productivity (WP) increased slightly from 2.11 to 2.15 kg/m3, associated with more water-intensive permanent crop production systems. Total economic water productivity (EWP) increased significantly by 111% from 0.55 to 1.16 US$/m3, which also indicated the substantial economic benefit brought to the SJWS by expanding the land area under high-EWP crops such as nut crops and vegetables. Nutritional water productivity (NWP) for energy, protein and fat were reduced from 1211 kcal/m3, 183 g/m3 and 105 g/m3 to 1141 kcal/m3, 111 g/m3 and 88 g/m3 during the period 2010–2018 mostly due to high water use. Total NWP for calcium was increased from 114 to 145 mg/m3, respectively. This study provides initial insights into the response of WP, EWP and NWP to the changing cropping patterns and climate variability for major crops in the SJWS, which could be used by a wide range of stakeholders including farmers, commodity boards, irrigation districts, groundwater sustainability basins, environmental justice groups and policy makers to optimize water resources planning and management. We recommend creating a comprehensive index that incorporates WP, EWP and NWP for making sustainable water resources planning and management decisions.
Keywords: Evapotranspiration; Water productivity; Economic water productivity; Nutritional water productivity; San Joaquin; SWAT (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421001177
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:250:y:2021:i:c:s0378377421001177
DOI: 10.1016/j.agwat.2021.106852
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().