EconPapers    
Economics at your fingertips  
 

SALEACH: A new web-based soil salinity leaching model for improved irrigation management

Hossein Shahrokhnia and Laosheng Wu

Agricultural Water Management, 2021, vol. 252, issue C

Abstract: Leaching is essential in irrigated croplands where natural precipitation is insufficient to control salinity buildup. Several useful models exist for salinity management; however, leaching requirement (LR) calculations are based on steady-state approaches that only consider salinity tolerance of crops and irrigation water salinity to estimate the LR. In this study, a web-based soil salinity leaching management model (SALEACH) was developed as an online tool to assist growers for better and easier management of soil salinity to sustain agricultural production in irrigated croplands. SALEACH employs the traditional steady-state approach to estimate LRs but improves outputs by not only considering irrigation water salinity (ECiw) and salinity tolerance of specific crops (ECt), but also root water uptake patterns to account for irrigation system differences, and soil types for differences in hydraulic characteristics, as well as water stress and rainfall input. The SALEACH model can calculate the required irrigation water depth by using the estimated LR or any user-specified leaching fraction (LF) values; it can predict the drainage water salinity and soil salinity in the rootzone based on the applied leaching; and it can estimate relative crop yield for a given LF. SALEACH-estimated LRs were assessed in different soil types and irrigation systems by comparing them with LRs, soil water and drainage water salinity values obtained from an existing steady-state model (WATSUIT) and a transient-state model (HYDRUS-1D). Statistical analyses showed that SALEACH-estimated LRs, soil salinity, and drainage water salinity were all in the acceptable ranges of the corresponding values derived from other models. Thus, we conclude SALEACH is reliable and can be employed by practitioners to produce satisfactory estimations of LRs and soil salinity by considering the soil, crop, water quality, and irrigation system. Adoption of the model can improve water use efficiency and reduce groundwater pollution.

Keywords: Leaching requirement (LR); Leaching fraction (LF); Salinity model; SALEACH (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421001700
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001700

DOI: 10.1016/j.agwat.2021.106905

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:252:y:2021:i:c:s0378377421001700