EconPapers    
Economics at your fingertips  
 

Methodology for studying nitrogen loss from paddy fields under alternate wetting and drying irrigation in the lower reaches of the Yangtze River in China

Jinwen Li, Xiaoyong Qian, Min Zhang, Kan Fu, Wenjun Zhu, Qingjie Zhao, Genxiang Shen, Zhenqi Wang and Xiaohua Chen

Agricultural Water Management, 2021, vol. 254, issue C

Abstract: Nitrogen (N) loss from paddy fields is a major cause of water eutrophication. Alternate wetting and drying (AWD) irrigation is a promising measure for controlling nutrient loss. Nevertheless, quantifying N loss from paddy fields under AWD to water bodies is difficult because of 1) the sharp fluctuations in soil moisture and 2) the variation in runoff N concentrations caused by the probable first flush effect. Consequently, studies on N loss are usually confined to plot experiments. From June to November 2020, a 2.5 ha field-scale experiment was conducted in Shanghai during the rice growth stage. The proposed methodology included recording the water levels in a paddy field, quantification of runoff, and implementation of automatic sampling procedures. The electrical conductivity (EC) of runoff was applied to study the loss characteristics of nutrients. The antecedent field water level (AFWL) in paddies was used to evaluate the effect of soil moisture on the field water capacity, which was indicated by the runoff curve number (CN). It was found that AWD significantly altered the CN. When the AFWL dropped to 100 mm beneath the soil surface, the CN dropped to 40. The EC was closely related to the N concentration (adjusted R2 = 0.76, n = 176) when water samples with N concentrations ranging from 0.28 to 109.32 mg/L were analyzed. A hydrograph of EC versus runoff velocity during rainfall events indicated the significant effects of dilution caused by rainfall; therefore, the estimate of N loss should be based on high-frequency sampling. There was a more significant first flush effect on N loss during rainfall events than with artificial drainage. However, due to the high frequency of artificial drainage, N loss through artificial drainage should also be fully taken into account. In conclusion, the quantity and quality of N loss were significantly affected by wide fluctuations in soil moisture under AWD and the first flush effect of rainfall.

Keywords: Nonpoint pollution; Irrigation conditions; Nitrogen loss; Water quality; First flush effect (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421002286
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002286

DOI: 10.1016/j.agwat.2021.106963

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002286