EconPapers    
Economics at your fingertips  
 

Numerical modeling to optimize nitrogen fertigation with consideration of transient drought and nitrogen stress

Thomas Groenveld, Amir Argaman, Jiří Šimůnek and Naftali Lazarovitch

Agricultural Water Management, 2021, vol. 254, issue C

Abstract: Optimization of nitrogen (N) fertigation is a formidable challenge involving complex interactions between water and N uptake and their effects on crop production. Numerical models can be useful in studying the interaction of multiple variables like those found in mechanistic simulations of N fertigation strategies. The physical aspects can often be accurately represented in soil-plant-atmosphere continuum models, while the biological factors lag due to their oversimplification. When optimizing N fertigation using numerical models, it is essential to consider the effects of N and water stresses on the plant size and corresponding feedback on potential transpiration and N uptake. The HYDRUS (2D/3D) model was modified to allow for active uptake and decay of multiple solutes and reduce potential transpiration due to a limitation in N uptake. Subsequently, we calibrated and validated the model with a dataset that consisted of 3 nitrate (NO3-) concentration and 6 irrigation levels: a total of 18 distinct treatments used to fertigate cucumber plants grown in lysimeters. The calibration was based on the treatment that received the highest N fertigation. The model was validated by testing its ability to accurately reduce potential N uptake and transpiration in water and N deficiency cases. Simulations showed that the N stress function could explain 82% of the reduction in transpiration measured in the experimental setup. The sensitivity analysis, evaluating the effects of the root shape and distribution parameters by increasing and decreasing their values by 20%, showed that these parameters had little impact on the results. Following its validation, the model was used to determine the optimal N concentration in irrigation water and the optimal N application amount to obtain maximal yield with minimal N loss. The optimal irrigation water NO3--N concentration and seasonal NO3--N application were determined to be 75 mg L−1 and 40 mg m−2, respectively.

Keywords: Transpiration; Nitrogen use efficiency; Active uptake; Nitrate leaching; Horticulture (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421002365
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002365

DOI: 10.1016/j.agwat.2021.106971

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:254:y:2021:i:c:s0378377421002365