Mulched drip irrigation increases cotton yield and water use efficiency via improving fine root plasticity
Jiangtao Wang,
Gangfeng Du,
Jingshan Tian,
Chuangdao Jiang,
Yali Zhang and
Wangfeng Zhang
Agricultural Water Management, 2021, vol. 255, issue C
Abstract:
The morphological characteristics of crop roots, especially the plasticity of fine roots, are directly related to the crop’s ability to obtain soil water. Mulched drip irrigation can effectively regulate soil water distribution to achieve high cotton yield with reduced water consumption. In the previous study, from the perspective of root-shoot coordination, we found that mulched drip irrigation reduced the growth redundancy of roots and improved the root productivity of cotton, thus achieving the goal of water-saving and increased yield. However, it is unclear if and how mulched drip irrigation enhances absorptive capacity of roots via regulating dry and wet soil areas and optimizing fine root morphology and distribution compared with traditional flood irrigation. To achieve this, the effects of fine root plasticity on the absorptive capacity of roots were studied in a two-year field experiment. Mulched drip irrigation (conventional drip irrigation and excessive drip irrigation) and traditional flood irrigation (reduced flood irrigation and conventional flood irrigation) were used, and soil water distribution and root distribution were determined. The results showed that compared with traditional flood irrigation, mulched drip irrigation significantly increased the soil water content (SWC) in the 0–60 cm soil layer and reduced the fluctuation amplitude of SWC at the flowering and boll stage of cotton. Mulched drip irrigation formed different dry and wet areas in the root zone, i.e., the SWC was higher in the shallow layer (0–40 cm) at 0–20 cm on both sides of the drip line, and most of the cotton roots were in the wet area. The higher SWC increased the distribution of fine roots in this area and shaped the shallow fine root system, which enhanced the cotton plant’s ability to absorb soil water. Statistical analysis showed that the higher fine root biomass in the 0–40 cm soil layer at the late full boll stage of cotton under mulched drip irrigation was beneficial to increase aboveground biomass, thus increasing total bolls and seed cotton yield. However, compared with the irrigation amount of field production (390 mm), an excessive amount of irrigation (600 mm) reduced the seed cotton yield of mulched drip irrigation, resulting in the decrease of irrigation water use efficiency (IWUE). Therefore, mulched drip irrigation optimizes the distribution of fine roots and enhances water uptake by effectively regulating the water–root relationship, and thus improves seed cotton yield and IWUE.
Keywords: Irrigation methods; Cotton; Spatial distribution of soil water; Fine root plasticity; Seed cotton yield; Irrigation water use efficiency (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421002572
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002572
DOI: 10.1016/j.agwat.2021.106992
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().