Agricultural drought prediction in China based on drought propagation and large-scale drivers
Yu Zhang,
Zengchao Hao,
Sifang Feng,
Xuan Zhang,
Yang Xu and
Fanghua Hao
Agricultural Water Management, 2021, vol. 255, issue C
Abstract:
Agricultural drought is generally defined as a deficit in soil moisture, and can affect plant growth and crop yields. Accurate prediction of agricultural drought with sufficient lead time can aid agricultural planning and reduce losses in agricultural production. In this study, the meta-Gaussian model was employed to predict agricultural drought (standardized soil moisture index, or SSI) during spring and summer in China based on the initial soil moisture conditions, antecedent meteorological drought (standardized precipitation index, or SPI) and large-scale drivers (El Niño-Southern Oscillation, or ENSO). Monthly precipitation and soil moisture data from Global Land Data Assimilation System, version 2 (GLDAS-2.0) were used to compute the meteorological and agricultural drought indicators. The conditional distribution of agricultural drought given multiple predictors was used for the statistical prediction. The autocorrelation of agricultural drought, the correlation between meteorological drought and agricultural drought, and the correlation between ENSO and agricultural drought were first evaluated to understand the predictors from soil moisture persistence, drought propagation, and large-scale drivers. We then employed the conditional distribution to predict agricultural drought over the period from 1948 to 2014, in which contributions of antecedent meteorological drought and large-scale drivers to the prediction performance were evaluated. Results showed that the prediction method performed well in semi-arid and sub-humid regions during spring, but did not perform well in humid regions during summer. In addition, the incorporation of ENSO provided useful predictability for long lead time prediction in certain regions (with significant influence of ENSO). The results obtained from this study can provide useful information for early agricultural drought warning across China.
Keywords: Drought prediction; Agricultural drought; Drought propagation; GLDAS (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421002936
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:255:y:2021:i:c:s0378377421002936
DOI: 10.1016/j.agwat.2021.107028
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().