EconPapers    
Economics at your fingertips  
 

Phosphorus runoff from Canadian agricultural land: A cross-region synthesis of edge-of-field results

Jian Liu, Jane A. Elliott, Henry F. Wilson, Merrin L. Macrae, Helen M. Baulch and David A. Lobb

Agricultural Water Management, 2021, vol. 255, issue C

Abstract: Algal blooms fueled by phosphorus (P) enrichment are threatening surface water quality around the world. Although P loss from arable land is a critical contributor to P loads in many agricultural watersheds, there has been a lack of understanding of P loss patterns and drivers across regions. Here, we synthesized edge-of-field P and sediment runoff data for 30 arable fields in the Canadian provinces of Saskatchewan, Manitoba and Ontario (a total of 216 site-years) to elucidate spatial and temporal differences in runoff and P mobilization in snowmelt and rainfall runoff, and discuss climatic, soil and management drivers for these patterns. Across all regions, precipitation inputs were positively correlated with runoff amounts and consequently P loads. Runoff and P losses were dominated by snowmelt across all sites, however, regional differences in runoff amounts, and P concentrations, loads and speciation were apparent. Proportions of total P in the dissolved form were greater in the prairie region (55–94% in Manitoba) than in the Great Lakes region (26–35% in Ontario). In Manitoba, dissolved P concentrations in both snowmelt and rainfall runoff were strongly positively correlated to soil Olsen P concentrations in the 0–5 cm soil depth; however, this relationship was not found for Ontario fields, where tile drainage dominated hydrologic losses. Although precipitation amounts and runoff volumes were greater in Ontario than Manitoba, some of the greatest P loads were observed from Manitoba fields, driven by management practices. This synthesis highlights the differences across the Canadian agricultural regions in P runoff patterns and drivers, and suggests the need of co-ordinated and standardized monitoring programs to better understand regional differences and inform management.

Keywords: Agricultural management practice; Climate variability; Eutrophication; Nutrient transport; Water quality; Watershed management (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037837742100295X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:255:y:2021:i:c:s037837742100295x

DOI: 10.1016/j.agwat.2021.107030

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:255:y:2021:i:c:s037837742100295x