Potential of water balance and remote sensing-based evapotranspiration models to predict yields of spring barley and winter wheat in the Czech Republic
František Jurečka,
Milan Fischer,
Petr Hlavinka,
Jan Balek,
Daniela Semerádová,
Monika Bláhová,
Martha C. Anderson,
Christopher Hain,
Zdeněk Žalud and
Miroslav Trnka
Agricultural Water Management, 2021, vol. 256, issue C
Abstract:
Indicators based on evapotranspiration (ET) provide useful information about surface water status, response of vegetation to drought stress, and potential growth limitations. The capability of ET-based indicators, including actual ET and the evaporative stress index (ESI), to predict crop yields of spring barley and winter wheat was analyzed for 33 districts of the Czech Republic. In this study, the ET-based indicators were computed using two different approaches: (i) a prognostic model, SoilClim, which computes the water balance based on ground weather observations and information about soil and land cover; (ii) the diagnostic Atmosphere–Land Exchange Inverse (ALEXI) model based primarily on remotely sensed land surface temperature data. The capability of both sets of indicators to predict yields of spring barley and winter wheat was tested using artificial neural networks (ANNs) applied to the adjusting number and timeframe of inputs during the growing season. Yield predictions based on ANNs were computed for both crops for all districts together, as well as for individual districts. The root mean square error (RMSE) and coefficient of determination (R2) between observed and predicted yields varied with date within the growing season and with the number of ANN inputs used for yield prediction. The period with the highest predictive capability started from early-June to mid-June. This optimal period for yield prediction was identifiable already at the lower number of ANN inputs, nevertheless, the accuracy of the prediction improved as more inputs were included within ANNs.The RMSE values for individual districts varied between 0.4 and 0.7 t ha–1 while R2 reached values of 0.5–0.8 during the optimal period. Results of the study demonstrated that ET-based indicators can be used for yield prediction in real time during the growing season and therefore have great potential for decision making at regional and district levels.
Keywords: Artificial neural network; Crop yield prediction; Evapotranspiration; Evaporative stress index; Spring barley; Winter wheat (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421003292
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003292
DOI: 10.1016/j.agwat.2021.107064
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().