Assessing basin blue–green available water components under different management and climate scenarios using SWAT
F. Jeyrani,
S. Morid and
R. Srinivasan
Agricultural Water Management, 2021, vol. 256, issue C
Abstract:
Because the pattern of climate and thus water demand varies rapidly, an accurate assessment of available water (AW) must be determined in order to manage water resources sustainable. This study investigated the components of basin AW using a comprehensive water balance framework based on the SWAT model. It consists of a system of relationships describing different components of water balance to estimate diverse forms of AW. The resulting modelling system is capable of displaying current status and past trends in the components of AW, highlight links between blue and green water components, assess AW at farm and basin scales, and forecast spatial and temporal variations of AW components under different water policies and climate scenarios as well as evaluating potential water shortage. To explore this methodology, the system was applied to the Tashk-Bakhtegan basin (Iran). The results for the historical period showed wide changes in the blue water components, which was very lower for the green water ones. For instance, it was between 63% and − 56% for renewable BW and 11% and − 24% for renewable GW with respect to their long term means. Similarly, blue water was more sensitive than green water to future annual precipitation variations. Evaluation of the construction of the basin’s major dam showed that it has drastic impact on the spatial blue AW components; such that they are increased in the adjacent subbasin up to 97% and reduced to half the status quo in the downstream subbasins. The basin has also experienced 30% increase in cropped areas, resulting in 1500 million meter cubic (MCM) water shortage in the current condition. Considering the framework as a relatively easy-to-use tools with readily available data, is strongly recommended for other regions.
Keywords: Available water; Green-Blue available water; Integrated framework; SWAT model; Tashk-Bakhtegan Basin (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421003395
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:256:y:2021:i:c:s0378377421003395
DOI: 10.1016/j.agwat.2021.107074
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().