EconPapers    
Economics at your fingertips  
 

Effects of Zanthoxylum bungeanum planting on soil hydraulic properties and soil moisture in a karst area

Ziqi Liu, Kaiping Li, Kangning Xiong, Yuan Li, Jin Wang, Jian Sun and Lulu Cai

Agricultural Water Management, 2021, vol. 257, issue C

Abstract: Zanthoxylum bungeanum plantations in karst areas in China are important for economic reasons and for restoring the ecological environment. However, the lack of water resources in karst areas will affect the growth of Zanthoxylum bungeanum and the restoration of the ecological environment. Studying the influence of Zanthoxylum bungeanum on soil hydraulic properties and soil moisture in karst areas is important to optimize management of Zanthoxylum bungeanum planting and for ecosystem vegetation restoration. In this study, 4-year-old and 11-year-old Zanthoxylum bungeanum forest sampling sites were selected, and abandoned land was used as a control site; 0–50 cm undisturbed soil samples were collected to determine the soil hydraulic properties, as well as the basic physical and chemical properties. Soil volumetric water content sensors were installed at 10, 25, 40 and 55 cm depths in the soil profile at each sampling site to measure the soil moisture dynamics (from May 12, 2018, to October 3, 2018). The results showed that Zanthoxylum bungeanum had a significant impact on the shallow soil hydraulic properties, i.e., reduced soil bulk density, increased field moisture capacity, porosity and soil moisture, and enhanced soil water holding capacity; these changes increased with the time since planting. Additionally, the rainfall responses and rainfall replenishment of soil water at the three sites were significantly different. The dynamic change in soil moisture in the shallow layer was mainly affected by precipitation and atmospheric temperature (evaporation), which resulted in rapid changes under dry and wet conditions, while soil moisture in the deep layer was mainly affected by precipitation recharge, which resulted in a long retention time. With the increase in time since the planting of Zanthoxylum bungeanum, the hysteresis of the soil moisture response to rainfall strengthened, and the soil water storage and stability improved. This study shows that the planting of Zanthoxylum bungeanum improved the shallow soil hydraulic properties in karst areas and can play a positive role in water conservation.

Keywords: Zanthoxylum bungeanum; Soil hydraulic properties; Soil moisture; Rainfall event; Karst (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421004017
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004017

DOI: 10.1016/j.agwat.2021.107125

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:257:y:2021:i:c:s0378377421004017