EconPapers    
Economics at your fingertips  
 

Nitrate supply limitations in tomato crops grown in a chloride-amended recirculating nutrient solution

Damianos Neocleous, Georgios Nikolaou, Georgia Ntatsi and Dimitrios Savvas

Agricultural Water Management, 2021, vol. 258, issue C

Abstract: Partial substitution of nitrate (NO3-) with chloride (Cl-) in the nutrient solution supplied to tomato crops (beefsteak and cherry types), grown in a closed hydroponic system, maintained nitrogen (N)- and carbon (C)- assimilation status in plants despite N-supply limitations. Lowering NO3- ions (90% of total N) supply to 2/3 of the standard recommendations, which was electrochemically compensated for by an equivalent increase of the Cl- concentration in the replenishment nutrient solution (RNS), increased N use efficiency (kg produce kg−1 N supply) and decreased NO3- in the drainage without compromising growth, yield and nutritional quality. Tomato plants supplied with Cl--amended RNS increased leaf Cl- content to macronutrient level (35 mg g−1 dry weight), retaining photosynthetic rates and crop yield potential at lower stomatal conductivity and transpiration. Nutrient to water uptake ratios (mass of nutrient per water volume absorbed), which are commonly termed ‘uptake concentrations’, were defined in different cropping seasons and ranged as follows: 12.1–13.5 (Nitrogen- NO3-+NH4+), 1.25–1.35 (Phosphorus-P), 6.1–6.3 (Potassium-K), 3.6–4.0 (Calcium-Ca), 1.0–1.3 (Magnesium-Mg, mmol L−1), 13.0–14.3 (Iron-Fe), 7.6–8.4 (Manganese-Mn), 5.1–5.2 (Zinc-Zn) and 0.7–0.9 (Copper-Cu, μmol L−1). The levels of N and Cl- supply had no impact on the uptake concentrations. This study suggests that replacing 1/3 of the standard NO3- supply by Cl- in closed hydroponic tomato crops enhances N use by two-fold and eliminates NO3- losses to one-half, with no significant effects on assimilation processes and fruit biomass production, suggesting that Cl- at appropriate concentrations is not only an essential micronutrient but also a beneficial macronutrient. The obtained uptake concentrations may be used through on-line operating decision support systems to optimize nutrient supply in hydroponic cultivations in Mediterranean greenhouses.

Keywords: Hydroponics; Nitrate; Chloride; Nutrient uptake; Crop yield; Photosynthesis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421004406
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004406

DOI: 10.1016/j.agwat.2021.107163

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004406