Physiological responses of almond trees under regulated deficit irrigation using saline and desalinated reclaimed water
Gaetano Alessandro Vivaldi,
Salvatore Camposeo,
Cristina Romero-Trigueros,
Francisco Pedrero,
Gabriele Caponio,
Giuseppe Lopriore and
Sara Álvarez
Agricultural Water Management, 2021, vol. 258, issue C
Abstract:
Regulated deficit irrigation (RDI) strategy using reclaimed water (RW) is becoming a common procedure in some Mediterranean regions. Full and regulated deficit irrigation were combined with desalinated (ECw 1 dS m−1) and saline (ECw 3 dS m−1) reclaimed water to irrigate young potted almond trees over a 3-year period. The full irrigation treatments received 130% of the crop evapotranspiration (ETc) and the RDI treatments received 80% of ETc during the kernel filling. Trunk diameter decreased in both RDI treatments at the end of the experimental period, although this response was more marked in the trees irrigated with saline RW. There were negative relationships between shoot growth and leaf Na+ and Cl+ contents in the saline treated trees, in which the accumulation of salts in leaves was associated with osmotic adjustment, which was responsible for maintaining midday leaf turgor. Plant water status, measured by the leaf and water potential, decreased in almond exposed to water deficit or irrigated with saline RW, indicating a slight dehydration in these plants due to the difficulty in water uptake from the substrate. Trees subjected to both deficit irrigation treatments showed lower stomatal conductance values than full irrigated treatments during the RDI period. However, at the end of experimental period, the lowest Pn values were found in plants irrigated with saline RW, especially in trees irrigated with saline RW combined with RDI strategy, verifying the relevance of duration of exposure to the stress. Saline and desalinated RW can be successfully used for irrigating almond trees, which might be of great economic and competitive significance for agriculture, but further research focused on a longer term should be carried out since detrimental effects might appear. Deficit irrigation combined with saline RW in P. dulcis is not recommended since it intensifies the negative effects of water and salt stress applied individually.
Keywords: Ion uptake; Osmotic adjustment; Prunus dulcis; Salinity; Treated wastewater; Water relations (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421004492
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004492
DOI: 10.1016/j.agwat.2021.107172
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().