EconPapers    
Economics at your fingertips  
 

Comparing the water use metrics of just-in-case, just-in-time and justified irrigation strategies using a scenario-based tool

M.S. Srinivasan, Richard Measures, Carla Muller, Mark Neal, Channa Rajanayaka, Ude Shankar and Graham Elley

Agricultural Water Management, 2021, vol. 258, issue C

Abstract: Efficient water use is an important outcome of effective irrigation scheduling strategies. We developed a physically-based hydrology tool IrriSET (Irrigation Strategy Evaluation Tool) to simulate the performance of different scheduling strategies against three water use metrics - amount of irrigation used, drainage resulted from irrigation, and duration root zone soil water (crop soil water reservoir) was held within optimum pasture growth conditions during the irrigation season. IrriSET was tested on an irrigated dairy farm in Canterbury, New Zealand, simulating the daily soil water balance using observed and estimated data on rainfall, evaporation, root zone soil water holding capacity, irrigation supply reliability, irrigation infrastructure limitations (how quickly and how much irrigation could be applied per event), and irrigation application efficiency (designed versus actual application) from eighteen irrigation seasons for three scheduling strategies – ‘just-in-case', ‘just-in-time', and ‘justified’. Just-in-case, a rostered, supply-based irrigation strategy, resulted in the most irrigation applied per season and drainage generated, and the least duration of time soil water held in the optimum pasture growth condition. Soil water demand-based just-in-time, and demand- and weather-forecast based justified irrigation strategies resulted in similar water use metrics, though the latter consistently and marginally outperformed the former. Even during irrigation seasons with below normal rainfall and average irrigation supply conditions, though the demand and supply-based strategies used similar irrigation amounts, the latter held soil water in the optimal growth range longer than the former. A strategy that proactively manages irrigation based on supply (irrigation water availability and forecast rainfall) and demand (soil water condition) has been shown to be environmentally sustainable and positively influential of soil water availability within root zone, and thus productivity.

Keywords: Water use efficiency; Drainage; Irrigation scheduling; Irrigation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421004984
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004984

DOI: 10.1016/j.agwat.2021.107221

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:258:y:2021:i:c:s0378377421004984