Climate change impacts on water security elements of Kafr El-Sheikh governorate, Egypt
Abdalmonem Alkhawaga,
Bakenaz Zeidan and
Mohamed Elshemy
Agricultural Water Management, 2022, vol. 259, issue C
Abstract:
Egypt faces great challenges to manage its limited freshwater resources. Shortage in freshwater, due to expected stresses of climatic changes and upper Nile projects, will have major impacts on Egypt's water and food security. About 85% of the annual total freshwater resource is consumed by agriculture. The objective of this work is to assess the future water security situation of Kafr El-Sheikh governorate, Nile Delta, Egypt, under climate change and urbanization stresses, compared to the current situation. Main investigated water security elements for this study were the irrigation water requirements and agricultural land areas. Two different reference evapotranspiration equations were used to calculate the future irrigation water requirements under three different Representative Concentration Pathways (RCP) (2.6, 4.5 and 8.5 scenarios) for the period 2010–2100, based on the intergovernmental panel on climate change’s 5th assessment report. Remote sensing and Geographical Information System (GIS) were used to generate a land use classification map, which was used to estimate the losses in each land use category of the study area under 0.5 and 1.0 m relative sea level rise (SLR) estimates. Combined scenarios of future changes in irrigation water consumption and agricultural land area were analysed. The results show that the future water security situation of the governorate is highly sensitive to projected climatic changes. Moreover, most future scenarios revealed that the agricultural land area would decrease, which will cause serious food security problems. The maximum decrease by about 55.9% of the agricultural land area for year 2095 compared to year 2016 is estimated, due to the current annual decreasing rate of 0.4% and 1.0 m SLR, whatever the applied RCP scenario. While the maximum increase in the required irrigation water would be about 6% due to the RCP85 scenario, assuming no change in the irrigation land area, with a mixing ratio of 1.34 (freshwater): 1 (drainage water) which would affect the crop yield productivity. A regular assessment of water security elements for each of the Egyptian governorates should be managed and an urgent integrated plan for food security to adapt with the future climate change impacts is essential.
Keywords: IPCC; Drainage water reuse; Nile Delta; Reference evapotranspiration; Remote sensing; SLR (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421004947
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421004947
DOI: 10.1016/j.agwat.2021.107217
Access Statistics for this article
Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns
More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().