EconPapers    
Economics at your fingertips  
 

Effects of anecic earthworms on runoff and erosion on the slope with soil from the Loess Plateau under a rainfall simulation experiment

Shuhai Wen, Jiao Wang, Yanpei Li and Shao, Ming’an

Agricultural Water Management, 2022, vol. 259, issue C

Abstract: Earthworms are ecological engineers that play an important role in hydrological processes and soil erosion by their burrowing and casting activities. Little is known, however, about the ecological function of the activities of an anecic species (Metaphire guillelmi) from the Loess Plateau in China where the soil is severely eroded. We conducted rain-simulation experiments on artificial slopes (mesocosms) filled with soil from Loess Plateau. Two rain intensities (90 and 120 mm h−1) and slope gradients (5° and 15°) were used to investigate the influences of earthworm activity on runoff and soil loss under multiple conditions. Data from 15 d of earthworm activity and 1 h of rain indicated that earthworm activity significantly reduced runoff but aggravated soil erosion. Runoff initiation time increased 2.7–3.1-fold, contributing to the promotion of water infiltration, and the amounts and rates of runoff were 35.8–61.6% and 35.1–60.8% lower under earthworm activity than the controls, respectively. Earthworms greatly influenced the physical and chemical properties of the soil, and these properties were strongly correlated with runoff initiation time and cumulative runoff. The surface casts produced by the earthworms on the soil surface were completely dispersed, increasing the cumulative sediment by a maximum of 169%. Both rain intensity and slope gradient greatly influence runoff and soil detachment, but with earthworm activity, slope gradient was more influential due to its superior contribution to sediment transport. This study quantified the effects of M. guillelmi on runoff and soil erosion and provides basic data for developing a more integrated control of soil erosion on the Loess Plateau.

Keywords: Earthworm; Runoff; Erosion; Bare slope; Simulated rain; Loess Plateau (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421005072
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005072

DOI: 10.1016/j.agwat.2021.107230

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005072