EconPapers    
Economics at your fingertips  
 

Seasonal variation and controlling factors of evapotranspiration over dry semi-humid cropland in Guanzhong Plain, China

Yunfei Wang, Yufeng Zou, Huanjie Cai, Yijian Zeng, Jianqiang He, Lianyu Yu, Chao Zhang, Qaisar Saddique, Xiongbiao Peng, Kadambot H.M. Siddique, Qiang Yu and Zhongbo Su

Agricultural Water Management, 2022, vol. 259, issue C

Abstract: The Guanzhong Plain is a critical food production area in the Yellow River Basin that frequently suffers from water shortages. In this study, long-term (June 2013 to June 2018) water and energy fluxes were observed, and path analysis was conducted over an irrigated winter wheat (Triticum aestivum L.) / summer maize (Zea mays L.) rotation field to identify the controlling factors of evapotranspiration (ET). Total ET for each crop year ranged from 627 to 775 mm, with an average growing season ET of 398 mm for wheat and 310 mm for maize. There is significant seasonal variation in both ET and surface conductance (Gs). Daily ET varied from 0.0 to 6.0 mm d–1 for wheat and 0.0 to 6.7 mm d–1 for maize. The peak daily values of Gs were 29.5 mm s–1 for wheat and 19.5 mm s–1 for maize. The direct and indirect effects of environmental and biological factors—net radiation (Rn), surface conductance (Gs), saturation vapor pressure deficit (VPD), leaf area index (LAI), air temperature (Tair), and volumetric soil water content (VWC)—on ET were calculated using the path analysis method. Rn was determined to be the primary controlling factor of ET for both the summer maize and winter wheat growing seasons. Also, Gs was found to be another controlling factor that has more controlling power in the summer maize growing season than in the winter wheat season. VPD had a significant positive and direct effect on ET for both of the crop seasons, while it had a significant negative and indirect effect on ET through Gs in the summer maize season. VWC and Tair only directly affected the wheat ET. In addition, VWC had two significant paths that can indirectly affect ET through LAI and Gs. The revealed seasonal patterns and controlling factors of evapotranspiration in this agroecosystem provide a theoretical basis for optimizing water resources management of the Yellow River.

Keywords: Evapotranspiration; Eddy covariance; Canopy conductance; Controlling factors; Guanzhong plain (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378377421005199
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005199

DOI: 10.1016/j.agwat.2021.107242

Access Statistics for this article

Agricultural Water Management is currently edited by B.E. Clothier, W. Dierickx, J. Oster and D. Wichelns

More articles in Agricultural Water Management from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:agiwat:v:259:y:2022:i:c:s0378377421005199